A00K-001
Volume 1 of 1

8 June 1981
Alphabetical List of HMP-1116 Operations
Code Mnemonic Description
(RR/SF)
i3 ACHR /Y Add With Carry Halfword
3A AER 77 Floating-Point Add
0A AHR /C Add Halfword
9F AIR 45 Acknowledge - Interrupt
26 AIS /O Add Immediate Short
01 BALR C Branch and Link
22 BFBS -+ Branch on False Backward Short
03 BFCR >~ Branch on False Condition
23 BFFS 5+~ Branch on False Forward Short
20 BTBS 2% Branch on True Backward Short
02 BTCR v+ Branch on True Condition
21 BTFS - Sranch on True Forward Short
29 CER ' Floating-Point Compare
09 CHR 2| Compare Halfword
05 CLHR -~ ! Compare Logical Halfword
20 DER 4 Floating-Point Divide
0D DHR /% Divide Halfword
ZE EPOR “/ Exchange Operand Bank Address
IF EPPR Exchange Program Address
95 EPSR 44 Exchange Program Status
94 EXBR ~ . Exchange Byte
11 LAVR Load Absolute Value Halfword
93 LBR +°L Load Byte
12 LCHR Load Complement Halfword
10 LCNHR Load and Change Number Base Halfword
25 LES 3 Load Complement Short
23 LER Z¢ Floating-Point Load
08 LHR 7/ Load Halfword
24 LIS 2 l.oad Imnediate Short
2C MER Floating-Point Multiply
ocC MHR /= Multiply Halfword

A2-3

MNUUNT VWL

Volume 1 of 1
8 June 1981

Alphabetical List of HMP-1116 Operations (Continued)

Code Mnemonic Description
" (RR/SF)

9C MHUR /= Multiply Halfword Unsigned
04 NHR 17 AND Halfword

9E 0CR S5O Output Command

06 OHR |7 OR Halfword

97 RBR S/ Read Block

98 RDR SO Read Data (Byte)

99 ‘RHR 5/ Read Halfword

OF SCHR /2 Subtract With Carry Halfword
2B SER 37 Floating-Point Subtract

0B SHR/ & Subtract Halfword

27 SIS /5 Subtract Immediate Short
91 SLLS 2.4/ Shift Left Logical Short
90 saLs 2 9 Shift Right Logical Short
90 SSR 4.5 Sense Status

92 STBR 2.7~ Store Byte

96 WBR S~ Write Block

9A WDR SO Write Data (Byte)

98 WHR 5! Write Halfword

07 XHR 2.0 Exclusive OR Halfword

(RI)

CA AHI /O Add Halfword

co ~ BXH Branch on Index High

Cl BXLE %5 Branch on Index Low or Equal
9 CHI 2.\ Compare Halfword

C5 CLHI 2/ Compare Logical Halfword
c8 LHI 7/ Load Halfword

c2 LPSW /2 Load Program Status Word
C4 NHI 1%/ AND Halfword

6 OHﬁF%v OR Halfword

E3 RESB Reset Status Bits

ER RLL 29 Rotate Left Fullword Logical

A2-4

AOOK-001
Volume 1 of 1

8 June 1981
Alphabetical List of HMP-1116 Operations (Continued)
Code Mnemonic Description
(RI)
EA RRL 30 Rotate Right Fullword Logical
£4 SESB Set Status Bits
cR SHI /5 Subtract Halfword
E2 SINT 44 Simulate Interrupt
EF SLA 39 Shift Left Fullword Arithmetic
CF SLHAZO Shift Left Halfword Arithmetic
cn SLHL 2% Shift Left Halfword Logical
ED SLL A% Shift Left Fullword Logical
EE SRA 2! Shift Right Fullword Arithmetic
CE SRHA Shift Right Halfword Arithmetic
GE SRHL. "\ Shift Right Halfword Logical
EC SRL 27 Shift Right Fullword Logical
El sve W Supervisor Call
C3 THI &© Test Halfword Immediate
Cc7 XHRI 2.0 Exclusive OR Halfword
(RX)
65 ABL. 573 Add to Bottom of List
4E ACH |+ Add with Carry Halfword
6A AL -7 Floating-Point Add
4A AH /O Add Halfword
61 AHM /© Add Halfword to Memory
DF AT Y5 Acknowledge Interrupt
D5 AL SO Autoload
64 ATL G Add to Top of List
41 3AL = Branch and Link
43 BFC >& Branch on False Condition
42 BTC Jo& Branch on True Condition
69 CE 4o Floating-Point Compare
49 CH &) Comparas Halfword
D4 CLB N2~ Compare Logical Byte
45 CLH o/ Compare Loaical Halfword

A2-5

MNJJYNTJUJL

Yolume 1 of 1

8 June 1981
Alphabetical List of HMP-1116 Operations (Continued)

Code Mnemonic Description
(RX)

) DE Y/ Floating-Point Divide

4D ph/ Divide Halfword

52 LAV Load Absolute Value Halfword
D3 LB 23 Load Byte

53 LCH Load Complement Halfword

51 LCNH Load and Change Number Base Halfword
68 LE 36 Floating-Point Load

48 EHF Load Halfword

74 LHO 7 Load from Bank 0

75 . LH1 7 Load from Bank 1

75 LH2 % Load froin Bank 2

77 LH3 % Load from Bank 3

D1 Mg Load Multiple

6C ME Zo Floating-Point Multiply

4C MH 16 Multiply Halfword

DC MHU /& Multiply Halfword

44 NH Y AND Halfword

DE oc 50 Output Command

46 on 17 OR Halfword

07 RB 5| Read Block

67 RBL 55 Remove from Bottom of List
DB RD SO Read Data (Byte)

D9 RH S Read Halfword

66 RTL 55 Remove from Top of List

4F SCH .5 Subtract with Carry Halfword
68 - SEH Floating-Point Subtract

4B SH /5 Subtract Halfword

DD SS 45 Sense Status

D2 ST8 L'~ Store Byte

60 STE 30 Floating-Point Store

40 STH 9 Store Halfword

F8 STHO 7 Store in Bank 0

A2-6

AOOK-001
Volume 1 of 1

8 June 1981
Alphabetical List of HMP-1116 Operations (Continued)

Code Mnemonic Description

(RX)
F9 STH1 9 Store in Bank 1
FA STH2 Store in Bank 2
F3 STH3 7 Store in Bank 3
D0 STM & Store Multiple
D6 W3 S2% Write Block
DA WD SO Write Data (Byte)
08 WH ! Write Halfword
47 XH AC Exclusive OR Halfword

(Double
Pracision)

5A ADP Add Fullword (RX)
1A ADPR Add Fullword (RR/SF)
59 cop Compare Fullword (RX)
19 CDPR Compare Fullword (RR/SF)
55 CLoP Compare Logical Fullword (RX)
15 CLDPR Compare Logical Fullword (RR/SF)
50 DoP Divide Fullword (RX)
10 DDPR Divide Fuliword (RR/SF)
53 LDP Load Fullword (RX)
18 LDPR Load Fullword (RR/SF)
5C MDP Multiply Fullword (RX)
1C MDPR Multiply Fullword (RR/SF)
5B SoP Subtract Fullword (RX)
1B SDPR Subtract Fullword (RR/SF)
E9 SLQA Shift Left Doubleword Arithmetic (RI)
E7 SLQR Shift Left Logical Doubleword (RI)
E8 SRQA Shift Right Doubleword Arithmetic (RI)
E6 " SRQL Shift Right Logical Doubleword (RI)
50 STDP Store Fullword (RX)

A2-7

AOOK-001
Volume 1 of 1

8 June 1981

Appendix 3

Numerical Listing of Computer Operation Codes

A3-0

Code

(RR/SF)
01
02
03
04
05
06
07
08
09
0A
0B
0c
0D
OF
OF
10
11
12
20
21
22
23
24
25
26
27
23
29
28
2C
20
2€

Volume 1 of 1
8 June 1981

Numerical List of HMP-1116 Operation Codes

Mnemonic

BALR
BTCR
BFCR
NHR
CLHR
OHR
XHR
LHR
CHR
AHR
SHR
MHR
DHR
ACHR
SCHR
LCNHR
LAVR
LCHR
BTBS
BTFS
BFBS
BFFS
LIS
LCS
AIS
SIS
LER
CER
SER
MER
DER
EPOR

Description

Branch and Link

Branch on True Condition
Branch on False Condition

AND Halfword

Compare Logical Halfword

OR Halfword

Exclusive OR Halfword

Load Halfword

Compare Halfword

Add Halfword

Subtract Halfword

Multiply Halfword

Divide Halfword

Add With Carry Halfword
Subtract with Carry Halfword
Load and Change Number Base Halfword
Load Absolute Value Halfword
Load Complement Halfword
Branch on True Backward Short
Branch on True Forward Short
Branch on False Backward Short
Branch on False Forward Short
Load Immediate Short

Load Complement Short

Add Immediate Short

Subtract Immediate Short
Floating-Point Load
Floating-Point Compare
Floating-Point Subtract
Floating-Point Multiply
Floating-Point Divide
Exchange Operand Band Address

A3-3

ADOK-001
Volume 1 of 1
8 June 1981

Numerical List of HMP-1116 Operation Codes (Continued)

Code Mnemonic Description
(RR/SF)
2F EPPR | Exchange Program Address
3A AER Floating-Point Add
99 SRLS Shift Right Loqical Short
91 SLLS Shift Left Logical Short
92 STBR Store Byte
93 LBR Load Byte
94 EXBR Exchange Byte
95 EPSR Exchange Program Status
95 'WBR Write Block
97 RBR Read Block
98 WHR Write Halfword
99 RHR Read Halfword
9A WDR Write Data (Byte)
9B RDR Read Data (Byte)
9C MHUR Multiply Halfword Unsigned
9D SSR Sense Status
9E OCR Qutput Command
9F AIR Acknowledne Interrupt
(RI)
co BXH Branch on Index High
Cl BXLE Branch on Index Low or Equal
c2 LPSW Load Program Status ‘lord
C3 THI Test Halfword Immediate
c4 NHI AND Halfword
C5 CLHI Compare Logical Halfword
C6 OHR OH Halfword
c7 XHR Exclusive OR Halfword
c8 LHI , lLoad Halfword
c9 CHI Compare Halfword
CA AHI Add Halfword
CB SHI Subtract Halfword

A3-4

Code

(RI)
cC
cn
CE
CF
El
E2
E3
E4
EA
EB
EC
ED
Ec
EF

(RX)
40
a1
42
43
44
45
45
47
13
49
aA
48
ac
4D
aE
4F

Volume 1 of 1
8 June 1981

Numerical List of HMP-1116 Operation Codes (Continued)

Mnemonic

SRHI
SLHI
SRHA
SLHA
SvVC
SINT
RESB
SESB
RRL
RLL
SRL
SLL
SRA
SLA

STH
BAL
BTC
BFC
NH
CLH
OH
XH
LH
CH
AH
SH
MH
DH
ACH
SCH

Description

Shift Right Halfword Logical
Shift Left Halfword Logical
Shift Right Halfword Arithmetic
Shift Left Halfword Arithmetic
Supervisor Call

Simulate Interrupt

Reset Status Bits

Set Status Bits

Rotate Right Fullword Logical
Rotate Left Fullword Logical
Shift Riqght Fullword Logical
Shift Left Fullword Logical
Shift Right Fullword Arithmetic
Shift Left Fullword Arithmetic

Store Halfword

Branch and Link

Branch on True Condition
Branch on False Condition
AND Halfword

Compare Logical Halfword
OR Halfword

Exclusive OR Halfword
Load Halfword

Compare Halfword

Add Halfword

Subtract Halfword
Multiply Halfword

Divide Halfword

Add With Carry iHalfword
Subtract With Carry Halfword

A3-5

AOOK-001
Volume 1 of 1

8 June 1981
Numerical List of HMP-1116 Operation Codes (Continued)

Code Mnemonic Description
(RX) |

51 _ LCNH Load and Change Number Base Halfword

52 LAV Load Absolute Value Halfword

53 LCH Load Complement Halfword

60 STE Floating-Point Store

61 AHM Add Halfword to Memory

64 ATL Add to Top of List

65 ABL Add to Bottom of List

66 RTL Remove From Top of List

67 RBL Remove From Bottom of List

68 LE Floating-Point Load

69 CE Floating-Point Compare

bA AL Floating-Point Add

68 SE Floating-Point Subtract

6C ME Floating-Point Multiply

60 DE Floating-Point Divide

74 LHO Load From Bank 0

75 LH1 Load From Bank 1

76 LH2 Load From Bank 2

17 LH3 Load From Bank 3

D0 STM Store Multiple

D1 M Load Multiple

D2 STB Store Byte

03 LB Load Byte

D4 CLB Compare Logical Byte

D5 AL Autoload

D6 WB Write Block

D7 RB Read Block

D8 WH Write Halfword

D9 RH Read Halfword

DA WD Write Data (Byte)

DB RD Read Data (Byte)

DC MHU Multiply Halfword Unsigned

A3-6

AUOK-001
Volume 1 of 1
8 June 1981

Numerical List of HMP-1116 Operation Codes (Continued)

Code : Mnemonic Description

(RX)
DD SS Sense Status
DE 0C Output Command
NF Al Acknowledge Interrupt
F8 STHO Store in Bank 0
F9 STH1 Store in Bank 1
FA STH2 Store in Bank 2
Fi STH3 Store in Bank 3

(Double
Precision)

15 CLOPR Compar2 Logical Fullword (RR/SF)
18 LDPR Load Fullword (RR/SF)
19 CDPR Compare Fullword (RR/SF)
1A ADPR Add Fullword (RR/SF)
13 SDPR Subtract Fullword (RR/SF)

- 1C ~ MOPR Multiply Fullword (RR/SF)
1) DDPR Divide Fullword (RR/SF)
50 STDP Store Fullword (RX)
55 - cLop Compare Loqical Fullword (RX)
58 LDP Load Fullword (RX)
59 © CoP Compare Fullword (RX)
5A ADP Add Fullword (RX)
58 Sop Subtract Fullword (RX)
5C MDP Multiply Fullword (RX)
50 noP Divide Fullword (RX)
E6 SRQL) Shift Right Logical Doubleword (RI)
E7 SLQL Shift Left Logical Doubleword (RI)
ES SRQA Shift Right Doubleword Arithmetic (RI)
E9 SLQA Shift Left Double~ord Arithmetic (RI)

A3-7

AOOK-001
Volume 1 of 1
8 June 1981

Appendix 10

Instructions

A10-0

AOOK-001
volume 1 of 1
8 June 1981

10.0 Controller Computer Instructions Description

The execution of each instruction shall effect the Condition Code in the Program
Status Register as specified in the CVGL (reference paragraph 3.2.1.1. 2) chart
accompanying the description of each instruction, Each CVGL chart illustrates
the possible variations of the Condition Code where one indicates set, zero
indicates reset, and X indicates undefined after the execution of the instruction.
The operation code and the locations of all fields shall be as specified in the
corresponding instruction diagrams. All operation codes are represented in
hexadecimal notation, The execution time for each instruction is specified in
3.2.1.1.6., For the purpose of this specification the instructions are grouped
in the following categories:

Category of Instruction No. of Types Paragraph/Table
Fixed-Point Load/Store 16 : 10.2
Fixed-Point Arithmetic 19 10.3
Logical and Compare _ 16 | 10.4
Byte Handling 6 10.5
Shift/Rotate 12 10.6
Branch 12 10. 7
Floating~Point 13 10.8
System Control 6 10.9
Input/Output : 19 10.10
List Processing 4 10.11
TOTAL -123

The symbols and abbreviations used in the following subordinate paragraphs are
defined as follows: :

([} Parentheses or Brackets, Read as '"the content of ...".
e Arrow. Read as "is replaced by ..." or 'replaces ... ",
A2 The 16-bit halfword address which is a part of the RX instructions.

A10-1

R1

M1

R2

12

X2

(0:7)
(8:15)
(16:31)

PSw

QO < 0

N

(R1, R1+1)

[A2+(X2),
A2+(X2)+2]

AOOK-001
Volume 1 of 1
8 June 1981

The address of a General Register the content of which is the
first operand.

Mask of four-bits specifying Branch on Condition testing.

The address of a General Register the content of which is the
second operand of an RR instruction.

The immediate value which is used as the second operand,

The address of a General Register the content of which is used as
an index value.

The four-bit second operand used with Short Format Immediate
instructions and the four-bit displacement value used with Short
Format Branch instructions.

A bit groupmg within a byte, a halfword, or a fullword.

Read as "0 thru 7 inclusive, "' Bits 8 through 15 inclusive, " etc.
Program Status Word of 32 bits oc.)ntaining the Operational Control,
Condition Code, and current instruction address.

Condition Code of four-bits contained in the PSW.

Carry Bit contained in the Condition Code (Bit 12 of PSW).
Overflow Bit contained in the Condition Code (Bit 13 of PSW),
Greater Than Bit contained in the Condition Code (Bit 14 of PSW).
Less Than Bit contained in the Conditicn Code (Bit 15 of PSW).

Add

Subtract

Multiply

Divide

Logical comparison, when used (e.g., R1:R2).

Fullword contained in a pair of registers.

Fullword located in memory.

A10-2

AOOK-001
Volume 1 of 1
8 June 1981

10,1 Effective Address Generation

The effective address for accessing memory will be generated by combining two
MSBs and 16 LSBs for all RX format instructions except if specifically stated
otherwise in the instruction description. The two MSBs shall be the operand bank
bits 10 and 11 of the Current PSW, The 16 LSBs shall be derived by adding the

A field and the content of the general register specified by the X2 field, i.e.,
A2+(X2). This shall give the item a memory addressing capacity of 256 K bytes
or 128 K halfwords.

10.2 Fixed-Point Load/Store Instructions

The Fixed-Point Load/Store instructions may be used to preset a register with
an index value, load a register with the first operand for a subsequent arithmetic
operation (e.g., add, multiply), or set the Condition Code for supplemental
testing by a Branch on Condition instruction, These instructions shall use the
Register to Register (RR), the Short Format (SF), the Register to Indexed
Storage (RX), and the Register and Immediate Storage (RI) formats. The exact
format, op-code, assembler notation and diagrammatic representation of each
instruction shall be as shown in Figures 10.2-1, -2 and -3, The operation and
resulting Condition Code shall be as follows:

a., Load Immediate Short: The Load Immediate Short (LIS) instruction
shall cause the four-bit second operand to be expanded to a 16-bit
halfword with high order bits set to zero, This halfword shall be loaded
into the General Register specified by R1. The resulting Condition Code

shall be:
C|V]|G]|L
X[X]0]O Operand is zero.
X|X[0]1 Operand is less than zero.
X[X|]1]0 Operand is greater than zero.

b. Load Complement Short: The Load Complement Short (LCS) instruction
* ghall cause the four-bit second operand to be expanded to a 16-bit half-
word with high order bits set to zero. The two's complement of this
halfword shall be loaded into the General Register specified by R1. The

resulting Condition Code shall be:

G| L
X|X[{0]O0 Operand is zero.
X|X|]0]1 Operand is less than zero.

o
»
-
=}

Operand is greater than zero.

A10-3

AOOK-001
Volume 1 of 1

8 June 1981
LOAD IMMEDIATE SHORT
LIS R1,N (Rl)e—nnv. N
1
24 R1 N (SF)
LOAD COMPLEMENT SHORT
Lcs R1,N (Rl)}e—o N
7 11112 15
25 R1 N [SF)
LOAD HALFWORD
LHR R1, R2 (R1)=—- (R2) :
[1) bi 1ala2 15
o8 R1 R2 [RR]
LH R1, A2 (x2) (Rlys—m0o [A2 + (X2)] BANK = PSW (10:11)
Q Z 12 15116 31
48 R1 X2 A2 [RX)
LHI R1, 12 (X2} (Rlpe——— 12 + (X2) BANK = PSW (10:11)
['] 7is 1 15116 31
cs R1 X2 12 [RI)
LOAD FROM BANK 0
LHO R1, A2(X2) (Rl}e—[A2 + (X2) + 0] BANK = 0
(1] 2 1112 15|16 31
T4 R1 x2 A2 [RX]
LOAD FROM BANK |
LH1 R1, A2(X2) (R1)e— [A2 + (X2) + 65,536] BANK = 1
1) i ;] 1 15116 31
75 R1 X2 A2 (RX]
LOAD FROM BANK 2
LH2 R1, A2(X2) (Rl)w—[A2+ (X2 +131,072] BANK = 2
0 718 11512 15{16 31
76 R1 X2 A2 [RX]
LOAD FROM BANK 3
LH3 R1, A2(X2) (Rl)s [A2 +(X2)+196,608] BANK = 3
'] 11112 15116 31
77 R1 X2 As][RX]

Figure 10.2-1. Fixed Point Load Instructions

HOo1-28SZL

A10-4

AOOK-001
Volume 1 of 1
8 June 1981

LOAD MULTIPLE
LM R1, A2 (X2) 1. {Rl)=— [A2 + (X2))

2. Rl: X'F'
IF Rl = X'F’, THE INSTRUCTION IS5 FINISHED
IF R1 ¥ X'F*, THEN:

3. Rk=—R1 ¢+ 1
4, A2e—A2 + 2, RETURN TO STEP 1

SZT-TYOEL

7|8 1112 15] 16 31
D1 R1 x2 A2 [RX]
STORE MULTIPLE
STM R1, A2 (X2) 1. (R1)—s=[A2 + (X2)]
2. Rl: X'F'

IF R1 = X'F', THEN INSTRUCTION IS FINISHED
IF R1 ¥ X'F’, THEN:

3. Rla—R1 + 1
4, A2=—A2 + 2, RETURN TO STEP 1

Do R1 x2 A2 [RX)

Figure 10.2-2. Multiple Load/Store Instructions

A10-5

STORE HALF WORD

STH R1, A2 (X2)

(R1)—a={A2 + (X2)]

BANK = PSW (10:11)

AO0K-001
Volume 1 of 1
8 June 1981

[RX]

[RX]

[RX]

[RX]

7|8 11]12 15(16 31
40 R1 X2 A2
STORE IN BANK 0 (A1) =g [A2 + (X2) + 0) BANK = 0
R1, /R2(X
STHO X2) 5.4 1112 15116 31
F8 R1 X2 A2
STORE IN BANK 1 (R1) =—== [A2 + (X2) + 65,536] BANK =]
1 R1, A2 (X
23 X2) 5.5 1112 15116 31
Fo R1 X2 A2
SOTRE IN BANK 2 (R1)=—e= [A2 + (X2) + 131,072] BANK = 2
S5TH2 R1, A2{X2)
718 11312 15 116 31
FA R1 x2 A2
STORE IN EANK 3 (Rl)—e= [A2 + (X2) + 196,608] BANK = 3
STH3 R1, A2(X2) - siiis 15416 si
FB R1 x2 A2

Figure 10.2-3. Fixed-Point Store Instructions

[RX]

HIT-28STL

A10-6

C.

e,

AOOK-001
Volume 1 of 1
8 June 1981

Load Halfword: The Load Halfword (LHR, LH, LHI) instructions shall
cause the second operand to be loaded into the General Register

specified by R1. In the RR format, if R1equals R2, the load instruction

shall function as a test on the content of the register. In the RX format,
the second operand shall be located on a halfword boundary. The
resulting Condition Code shall be:

C|V|G]|L

X[X]0]0 Operand is zero.
X|X|]0{|1 Operand is less than zero.
X|X|]1]0 Operand is greater than zero.

Load From Bank 0: The Load From Bank 0 (LHO) instruction shall be a
halfword load instruction whose effective address shall be computed
relative to bank 0, without regard to the operand bank bits (10:11) in the
Current PSW, The instruction shall cause the second operand to be
loaded into the General Register specified by R1. The second operand
aﬁ:l.l{ x located on a halfword boundary. The resulting condition Code
8 :

C|V|G|L

X|X|]0]0 Operand is zero.
X|X]0]1 Operand is less than zero.
X[X]110 Operand is greater than zero.

Load From Bank 1: The Load From Bank 1 (LH1) instruction shall be a
halfword load instruction whose effective address shall be computed
relative to bank 1, without regard to the operand bank bits (10:11) in the
Current PSW. The instruction shall cause the second operand to be
loaded into the General Register specified by R1, The second operand
shall be located on a halfword boundary, The resulting Condition Code
shall be:

C|V|G]|L

X|1X[|0]0 Operand is zero.
X|X|]0}]1 Operand is less than zero.
X|X|[(1/|0 Operand is greater than zero.

Load From Bank 2: The Load From Bank 2 (LH2) instruction shall be a
halfword load instruction whose effective address shall be computed
relative to bank 2, without regard to the operand bank bits (10:11) in the
Current PSW. The instruction shall cause the second operand to be
loaded into the General Register specified by R1. The second operand

A10-7

AOOK-001
Volume 1 of 1
8 June 1981

shall be located on a halfword boundary, The resulting Condition Code
shall be:

C|V|G]|L

X|X]0¢{0 Operand is zero.
X|X!0|1 Operand is less than zero.
X|X|1/(0 Operand is greater than zero.

Load From Bank 3: The Load From Bank 3 (LH3) instruction shall be a
halfword load instruction whose effective address shall be computed
relative to bank 3, without regard to the operand bank bits (10:11) in the
Current PSW, The instruction shall cause the second operand to be
loaded into the General Register specified by R1. The second operand

shall be located on a halfword boundary. The resulting Condition Code
shall be: :

C|V|G]|L

Zl1Xj01]0 Operand is zero.
X|X]01]1 Operand is less than zero.
X[(X]|]11]0 Operand is greater than zero.

Load Multiple: The Load Multiple (LM) instruction shall cause sequential
halfwords from memory to be loaded into successive General Registers,
beginning with the General Register specified by the R1 field. The first
halfword shall be defined by A2+(X2) and shall be located on a halfword
boundary. The operation shall be terminated when R15 ig loaded from
memory. . Note that any number of sequential General Registers can be
loaded in this manner. The Condition Code shall be unchanged by the
execution of this instruction.

Store Multiple. The Store Multiple (STM) instruction shall cause succes-
sive General Registers to be stored sequentially into memory, beginning
with the General Register specified by the R1 field. The first storage
address shall be determined by A2+(X2) and shall be located on a halfword
boundary. The operation shall be terminated when R15 is gtored in
memory. Note that any number of sequential General Registers can be
transferred in this manner. The Store Multiple (STM) instruction in
conjunction with the Load Multiple (LM) instruction is an aid to subroutine
execution. They permit the easy saving and restoring of the registers
required by the subroutine. The Store Multiple instruction can be used
upon entering the subroutine, and the Load Multiple would be the last
instruction executed before returning from the subroutine. The Condition
Code shall be unchanged by the execution of this instruction.

A10-8

AO0K-001
Volume 1 of 1
8 June 1981

jo Store Halfword: The Store Halfword (STH) instruction shall store the
16-bit first operand in the memory location specified by the second
operand. The second operand shall be located on a halfword boundary.
The first operand shall remain unchanged. The Condition Code shall
remain unchanged,

k., Store In Bank 0: The Store in Bank 0 (STHO) instruction shall be a half-
word store instruction whose second operand effective address shall be
computed relative to bank 0, without regard to the operand Bank bits
(10:11) in the Current PSW. The instruction shall store the 16-bit first
operand in the memory location specified by the second operand, The
second operand shall be located on a halfword boundary. The first
operand shall remain unchanged. The Condition code ghall remain
unchanged,

1. Store In Bank 1: The Store in Bank 1 (STH1) instruction shall be a half-
word store instruction whose second operand effective address shall be
computed relative to bank 1, without regard to the operand Bank bits
(10:11) in the Current PSW, The instruction shall store the 16-bit first
operand in the memory location specified by the second operand, The
second operand shall be located on a halfword boundary. The first
operand shall remain unchanged. The Condition code shall remain
unchanged,

m, Store In Bank 2: The Store in Bank 2 (STH2) instruction shall be a half-
word store instruction whose second operand effective address shall be
computed relative to bank 2, without regard to the operand Bank bits
(10:11) in the Current PSW, The instruction shall store the 16-bit first
operand in the memory location specified by the second operand, The
second operand shall be located on a halfword boundary, The first
operand shall remain unchanged., The Condition code shall remain
unchanged.

n, Store In Bank 3: The Store in Bank 3 (STH3) instruction shall be a half-
word store instruction whose second operand effective address shall be
computed relative to bank 3, without regard to the operand Bank bits
(10:11) in the Current PSW, The instruction shall store the 16-bit first
operand in the memory location specified by the second operand., The

. second operand shall be located on a halfword boundary, The first
operand shall remain unchanged. The Condition code shall remain
unchanged.

10.3 Fixed-Point Arithmetic Instructions, The item shall e xecute the Fixed-
Point Arithmetic instructions to provide for addition, subtraction, multiplication
and division of a fixed-point data contained in the general registers and/or
memory. The Fixed-Point Arithmetic instructions provide for calculating
addresses and indexes for counting, and for general purpose fixed-point
arithmetic. The Fixed-Point Arithmetic instructions shall use the RR, SF, RX
and RI formats, The exact format, op-code, assembler notation and

A10-9

AOOK-001
Volume 1 of 1
8 June 1981

diagrammatic representation of each instruction shall be as shown in
Figures 10.3-1, -2, -3, and -4. The operation and resulting Condition Code
shall be as follows:

a‘

Add Immediate Short: The Add Immediate Short (AIS) instruction shall
cause the four-bit second operand N to be added to the contents of the
General Register specified by R1. The second operand shall be expanded
to a 16-bit halfword by forcing the high order bits to zero. The resulting
Condition Code shall be:

C|V|G| L

X]|X|[0]| o0 Sum is zero.

X|X[0]| 1 Sum is less than zero.

X X110 Sum is greater than zero.
X1 X| X Arithmetic overflow.

1| x| x| x Carry. |

Add Halfword: The Add Halfword (AHR, AH, and AHI) instructions shall

cause the second operand to be added algebraically to the contents of the
General Register specified by R1. The result of thig 16~-bit addition
replaces the contents of the Register specified by R1. In the RX format
the second operand must be located on a halfword boundary. The Add
Halfword Immediate (AHI) instruction shall produce a value which is the
algebraic sum of the address field itself, the content of a General
Register index (X2), and the first operand General Register (R1). The
resulting Condition Code shall be;

C|V]|G| L

X[X|o]o Result is zero,

X|X[0] 1 Result is less than zero.
X|X]1fo0 Result is greater than zero.
X|1|X]| X Arithmetic overflow,

1 [X[X X Carry.

Add Halfword to Memory: The Add Halfword to Memory (AHM) instruction

shall cause the second operand [A2+(X2)] to be added to the contents of
the General Register specified by R1. The result of the addition shall not
replace the contents of R1, but instead shall be stored in memory at

the address specified by A2+(X2). The first operand (R2) shall remain
unchanged. This instruction effectively permits every location in core

A10-10

ADD IMMEDIATE SHORT

AQ0K-001
Volume 1 of 1
8 June 1981

AlS R1. N (Rl1}a—— (R1) + N
0% 718 11]12 18
26 R1 N [SF)
ADD HALFWORD
AHR R1, R2 (R1}=—-(R1) + (R2)
0 7]8 11112 18
OA R} R2 [RR])
AH R1,A (X2) (R1)ye———(R1) + [A2 + (X2)]
Q 7]s 11]12 15h16 31
4A R1 X2 A2 [RX]
AHI R1, 12 (X2) (R1)y=— (R1) + 12 + (X2)
(V] 11§12 15§16 31
cA R1 x2 12 [RI)
ADD HALFWORD TQO MEMORY
AHM R1, A2 (X2) [A2 + (X2)]) =——(R1) + [AZ + (X2)]
0 7|8 1112 1516 31
61 R1 ®2 A2 [RX]
ADD WITH CARRY HALFWORD
ACHR R1, R2 (Rys— (R1) ¢ (R2)+C
0 7]8 11)12 15]
OE R1 R2 [RR]
ACH R1, A2 (X2) (R1)=— (R1) + [A2 + (X2)) +C
0 7|8 11)12 15 |16 31
4E R1 x2 . A2 (RX]

Figure 10.3-1. Fixed-Point Add Instructions

HZ1-2582¢L

A10-11

SUBTRACT IMMEDIATE SHORT

sis

(R1)<@—— (R1) -N

8 1112 15

27

SUBTRACT HALFWORD

R1 M [SF)

A0OK-001
Volume 1 of 1
8 June 1981

SHR R1, R2 (R1) <%= (R1} - (R2)

0 8 11112 18
o R1 | R2 [RR]

SH R1,12 (X2) (Rl)=——— (R1) -[A2 + (X2)]

0 8 1112 15116 31
48 R1 x2 A2

SHI R1, A2 (X2) (R1)=—— (R1) -12 -(X2)

0 B 11112 1 3]
cBe R1 X2 I 12

SUBTRACT WITH CARRY HALFWORD

SCHR RI1, R2 (R1)=— (R1) -(R2) -C

)] 11,12 15
OF R1 ‘R2 [RR]

SCH R1, A (X2) (R1)=— (R1) -[A + (X2)] -C

o 8 11,12 18,16 31
AF R1 x2 A2

Figure 10.3-2. Fixed-Point Subtract Instructions

[RX]

[RI]

[RX)

HET-ZBSZL

A10-12

MULTIPLY HALFWORD
1, R2

AOOK-001

Volume 1 of 1

8 June 1981

[RX]

MHR (R1, R1 + 1)=@—(R1 ¢+ 1)* (R2)
0 (] 11 1
oc R1 R2 [RR]
MH R1, A2(X2) (R1, R1 + 1}a—(R1 + 1)* [A2 + (X2)]
0 718 1112 1shs 31
AC R1 x2 A2
MULTIPLY HALFWORD UNSIGNED
MHUR R1, R2 (R1, R1 + 1)a—{R1 + 1)* (R2)
7ls 11112 1
9C R1 R2 (RR]
MHU R1, A2 (X2) (R1, R1 + 1)s—{R1 + 1)* [A2 + (X2)]
0 8 11112 15]16) 31
DC R1 X2 A2
Figure 10.3-3. Fixed-Point Multiply Instructions
DIVIDE HALFWORD
DHR R1,R2 (R1 + 1)-@—(R1, R1 + 1)/(R2)
(R1)=———REMAINDER
b 7|8 11|12 15
oD R1 R2 [RR]
DH R, A2(X2) (R1 + 1)=—(R1, R1 + 1)/[A2 + (X2))
{R1)-e——— REMAINDER
o 78 1112 15,16 3
4D R1 X2 A2

Figure 10.34. Fixed-Point Divide Instructions

[RX]

62-TYOEL

[RX]

9Z-ZYOEL

A10-13

AQOK-001
Volume 1 of 1
8 June 1981

memory to be used as a counter. The second operand shall be located
on a halfword boundary. The resulting Condition Code shall be:

C|V|G|L

X|X|0]0 Result is zero.
X[X|0(|1 Result is less than zero.
X|X[|11}0 Result is greater than zero.
X(1]X]X Arithmetical overflow,

1 1 XXX Carry.

Add With Carry Halfword: The Add with Carry Halfword (ACHR and ACH)
instructions shall cause the 16-bit second operand and the Carry Bit of
the Condition Code (PSW 12) t{o be added algebraically to the General
Register specified by R1. The resulting sum shall be contained in R1.
The second operand shall be unchanged.

Multiple precision addition operations require a Carry forward from the
least significant operands to the most significant. To accomplish this,
the locations containing the least significant portions of the two operands
are summed, using the Add Halfword (AH) instruction. A Carry forward,
if it occurs, is retained in the Carry Bit position of the Condition Code
(PSW 12).

The locations containing the next least significant portions of the two
operands are then summed, using the Add with Carry Halfword (ACH)
instruction. The Carry Bit contained in the Condition Code (set from the
previous addition) participates in this sum; the Carry Bit position is then
set to reflect the new result.

The Add with Carry Halfword (ACH) instruction, is used on succeeding
pairs of operands until the most significant operand of the multiple
precision words have been summed. The resulting Condition Code is
valid for testing the multiple precision word.

The Condition Code shall be:

C|VI|IG|L

X[X|0[O0 Result is zero.
X|X|0|1 Result is less than zero.

X[X|11]0 Result is greater than zero.
X1]| X|X Arithmetic overflow.

1 | X | X | X Carry.

A10-14

€,

f.

AO00K-001
Volume 1 of 1
8 June 1981

Subtract Immediate Short: The Subtract Inmediate Short (SIS)

instruction shall cause the four-bit second operand N to be subtracted
from the contents of the General Register specified by R1. The second
operand is obtained by expanding the four-bit data field, N, to a 16-bit
halfword by forcing the high order bits to zero. This instruction is
useful for decrementing a register by a small value (e.g., X'2'), The
resulting Condition Code shall be:

C|V|G|L

Result is zero.

Result is less than zero.
Result is greater than zero.
Arithmetic overflow.

oMW KX
KoM KN
M M © = ©

0

0

1
X
X

Borrow.

Subtract Halfword: The Subtract Halfword (SHR, SH, and SHI)
instructions shall cause the second operand to be subtracted from the
General Register specified by R1, The difference shall be contained in
R1. The second operand is unchanged. In the RX format, the second
operand shall be located on a halfword boundary. The Subtract Halfword
Immediate (SHI) instruction shall produce a value which is the difference
between the first operand General Register (R1), less the sum of the
address field itself and the content of a General Register index (X2).
The resulting Condition Code shall be:

CI|V|G|L

X|X|]01]0 Result is zero,
X[X|]0]|1 Result is less than zero.
X|X[{1]0 Result is greater than zero.
X111 XX Arithmetic overflow,

1 | X X] X Borrow.,

Subtract With Carry Halfword: The Subtract with Carry Halfword (SCHR
and SCH) instructions shall cause the 16-bit second operand with the
Carry (borrow) Bit to ba subtracted from the General Register specified
by R1. The difference shall be contained in R1. The second operand

A10-15

AOOK-001
Volume 1 of 1
8 June 1981

shall be located on a halfword boundary. The resulting Condition Code
shall be:

Result is zero.

Result is less than zero.
Result is greater than zero
Arithmetic overflow,

oM XM X0
KX X K<

MoK = O Ol
M M o = o|H

Borrow.

Multiply Halfword: The Multiply Halfword (MHR and MH) instructions
shall cause the 16-bit second operand to be multiplied by the contents

of the General Register specified by R1+1. The R1 field of the instruction
shall specify an even numbered register. The resulting 32-bit product
shall be contained in R1 and R1+1, an even-odd pair; the second operand
shall be unchanged. The sign of the product shall be determined by the
rules of algebra. In the RX format, the second operand shall be located
on a halfword boundary. After multiplication, the most significant

15 bits with sign shall be contained in R1. The least significant 16 bits
shall be contained in R1+1. The Condition Code shall remain unchanged.

Multiply Halfword Unsigned: The Muitiply Halfword Unsigned (MHUR

and MHU) instructions shall cause the 16-bit second operand to be
multiplied by the contents of the General Register specified by R1+1,

All 16-bits of both operands shall be considered to be magnitude. The
resulting 32-bit product shall be contained in R1 and R1+1, the second
operand shall be unchanged. The R1 field of the instruction shall

specify an even numbered register. This instruction is most useful in
applications requiring multiple precision multiply capability. The Condition.
Code shall remain unchanged.

Divide Halfword: The Divide Halfword (DH and DHR) instructions shall
cause the 16-bit second operand to be divided into the 32-bit dividend
contained in the General Register specified by R1 and R1+1. The first
operand, R1, shall specify an even numbered register. The resulting
15-bit quotient with sign shall be contained by R1+1; a 15-bit remainder
with sign shall be contained in R1, the second operand shall be unchanged.
The sign of the result shall be determined by the rules of algebra; the
sign of the remainder shall be the same as the sign of the dividend. In
the RX format, the second operand shall be located on a halfword boundary
Attempted division by zero or a quotient which would be greater than
X'8000' shall cause termination of the instruction execution and a Fixed-
Point Divide Fault Interrupt, if enabled by Bit 3 of the Program Status
Word. The operands shall remain unchanged when a Fixed-Point Divide

A10-16

A0OK-001
Volume 1 of 1
8 June 1981

Fault Interrupt occurs. The Condition Code shall remain unchanged in all
cases.

10.4 Logical and Compare Instructions, The item shall execute Logical and
Compare instructions such that each bit of the first operand is logically combined
or compared with the corresponding bit in the second operand, The Logical and
Compare instructions shall use the RR, RX and RI formats. The exact format,
op-code, assembler notation and diagrammatic representation of each instruction
shall be as shown in Figures 10,4-1 and -2. The operation and resulting Condition
Code shall be as follows:

a. AND Halfword: The AND Halfword (NH, NHR, NHI) instructions shall
cause the logical product of the 16-bit second operand and the content of
the General Register specified by R1, to replace the content of R1. The
16-bit product shall be formed on a bit-by-bit basis. In the RX format,
the second operand shall be located on a halfword boundary., The AND
Halfword Immediate (NHI) instruction shall produce a value which is the
logical product of the address field itself plus the content of a General
Register index (X2) with the first operand General Register (R1). The
truth table for the AND function is:

0AND 0 =0
0AND1=0
1ANDO0 =0
1AND1=1

The resulting Condition Code shall be:

C|V|G|L

X|X|01]o0 Logical product is zero.
X|X[0]1
X|X|11]0

} Logical product is not zero.

b. OR Halfword: The OR Halfword (OH, OHR, OHI) instructions shall cause
the logical sum of the 16-bit second operand and the content of the
General Register specified by R1 to replace the content of R1. The 16-bit
sum shall be formed on a bit-by-bit basis. In the RX format, the second
operand shall be located on a halfword boundary. The OR Halfword
Immediate (OHI) instruction shall produce a value which is the logical
sum of the address field itself plus the content of the General Register
index (X2) with the first operand General Register (R1). The truth table
for the OR function shall be:

OORO0=0
OOR1=1
10R0=1
10R1=1

A10-17

A00K-001
Volume 1 of 1
8 June 1981

AND HALFWORD

(Rl)==— (R1) AND (R2)

NHR R1, R2
0 7,8 1112 15 o
o4 R1 R2 [RR) E
W
(-]
NH R1, A2 (X2) (R1) =— (R1) AND [A2 + (X2)]
o 7,8 11,12 15,16 31
44 R1 X2 A2 [RX]
NHI R1,12 (X2) (R1) — (R1) AND 12 + (X2)
0 7,8 11,12 1516 3
c4 R1 x2 12 [RI}
OR HALFWORD
OHR R1, R2 {R1)==——(R1) OR (R2)
0 7,8 1112 15
06 R1 R2 [RR]
OH R1, A2({X2) {R1}e— (R1) OR [A2 + (X2)]
1} 7,8 11,12 15,16 31
46 R1 X2 A2 [RX]
OHI (R1)==——(R1) OR 12 + (X2)
0 7,8 11,12 15,16 31
cé6 R1 X2 12 [RI]
EXCLUSIVE OR HALFWORD
XHR R1, R2 (R1ee=——(R1) XOR (R2)
0 7,8 1112 15
07 R1 R2 [RR]
XH R1, A2 (X2)' (R1l)=— (R1) XOR [A2 + (X2)]
[V} 7,8 11,12 15,16 31
47 R1 x2 A2 [RX]
XHI R1, 12 (X2) {R1)=— (R1) XOR 12 + (X2)
(i} 7,8 11,12 15,16 31
c7 R1 X2 12 [R1]
TEST HALFWORD IMMEDIATE
THI R1,12(x2) (R1) AND 12 + (X2)
o 78 1112 15,16 31
c3 R1 X2 12 [RI]

Figure 10.4-1. Logical and Bit Manipulating Instructions

AOOK-001

Volume 1 of 1

8 June 1981

COMPARE LOGICAL HALFWORD
CLHR R1, R2 (R1) : (R2)
0 ne 11512 15

05 R1 R2 (RR]
CcLH R1, A2 (X2) (R1) : JA2¢ (X2)])
0 ne - . 14y12 15116 31

45 R1 X2 A2 (RX]
CLHI R1, 12{X2) (R1) 1 12 +(X2)
0 8 11§12 1516 31

cs T R1 X2 12 [RX]
COMPARE HALFWORD
CHR R1, R2 (R1) : (R2)
0 7,8 11112 15

09 R1 R2 {RR]
CH R1, A2 (X2) (R1): [A2 + (X2))
0 718 11)12 15116 31

49 A1 x2 A2 {RX]
CHI R1,12(X2) (R1) 112 + (X2)
0 718 11)12 15116 31

c9 R1 x2 12 (rR11"

Figure 10.4-2. Compare

Instructions

Hvi-28SeL

A10-19

AQ0OK-001
Volume 1 of 1
8 June 1981

The resulting Condition Code shall be:

C|V|G|L

X[X})0]0 Logical sum is zero.,
X[X[0]1

xlxl11o0 } Logical sum is not zero.

Exclusive OR Halfword: The Exclusive OR Halfword (XH, XHR, XHI)
shall cause the logical difference of the 16-bit second operand and the
General Register specified by R1 to replace the content of R1. The
16-bit difference shall be formed on a bit-by-bit basis. In the RX
format, the second operand shall be located on a halfword boundary.
The Exclusive OR Halfword Immediate (XHI) instruction, shall produce
a value which is the logical difference of the address field itself plus the
content of the General Register index (X2) with the first operand General
Register (R1), The truth table for the Exclusive OR function shall be:

0XOR0=0
0XOR1=1
1XOR0=1
1XOR1=0

The resulting Condition Code shall be:

C|V| G| L

Logical difference is zero.,

®KoMoX
®o K

0|0
0|1
11 o Logical diffierence is not zero.

Test Halfword Immediate: The Test Halfword Immediate (THI)

instruction shall cause each bit in the 16-bit second operand to be
logically ANDed with the corresponding bit in the General Register
specified by R1. The contents of R1 and the second operand shall
remain unchanged. The Test Halfword Immediate (THI) instruction
can be used to test the state of individual bits or combinations of bits
in a General Register. For example, to test the state of Bit 6 in
Register 3, use THI 3, X'0200'. The resulting Condition Code shall be:

C|lV| G| L

0 0 None of the bits of the result set.
0 1 Bit 0 of the result set,
110

X
X
X One or more of bits 1-15 of the result set,

“oKoN

A10-20

AQOOK-001
Volume 1 of 1
8 June 1981

e. Compare Logical Halfword: The Compare Logical Halfword (CLHR,
CLH, and CLHI) instructions shall cause the first operand specified by
R1 to be compared logically to the 16-bit second operand. The result

‘shall be indicated by the setting of the Condition Code PSW (12:15) .
Both operands shall remain unchanged. The logical comparison shall

be performed by subtracting the second operand from the first operand.
The result shall be in the Condition Code setting, the operands shall not
be modified. The Compare Halfword Immediate (CLHI) instruction shall
produce a value which is the logical comparison of the address field
itself plus the content of a General Register index (X2) with the first
operand General Register (R1). In the RX format, the second operand
shall be located on a halfword boundary. The resulting Condition Code
shall be: :

First operand equal to second operand.

{ First operand not equal to second operand.

First operand less than second operand.

S H X X X|O

- RS
MO = o ol
MM O = olH

First operand equal to or greater than second
operand,

f. Compare Halfword: The Compare Halfword (CHR, CH, and CHI)
instructions shall cause the first operand specified by R1 to be compared
to the 16-bit second operand. The comparison shall be algebraic, taking
into account the sign and magnitude of each number. The result shall be
indicated by the setting of the Condition Code PSW (12:15) . Both
operands shall remain unchanged. In the RX format, the second operand
shall be located on a halfword boundary. The Compare Halfword (CH)
instructions, perimit arithmetic comparison of signed two's complement
16-bit integers. The resulting Condition Code shall be:

First operand equal to second ‘operand.
First operand less than second operand.
First operand greater than second operand.
First operand less than second operand.

© = X X X|O
KoMK W X<
NN"'C’C"Q
o T

First operand equal to or greater than
second operand,

A10-21

AQOK-001
Volume 1 of 1
8 June 1981

10.5 Byte Handling Instructions. The item shall execute the Byte Handling
instructions to provide for transferring bytes between memory and the General
Registers. All operands shall be 8-bit bytes. The Byte Handling instructions
shall use the RR and RX formats. The exact format, op-code, assembler notation
and diagrammatic representation of each instruction shall be as shown in

Figure 10.5-1. The operation and resulting Condition Code shall be as follows:

a-

Load Byte: The Load Byte (LB, LBR) instructions shall cause the
eight-bit second operand to be loaded into the right-most (least
significant) eight-bits of the General Register specified by R1. The
left-most (most significant) eight-bits of R1 shall be set to zero. The
second operand shall remain unchanged. In the Load Byte Register (LBR)
instruction, the second operand shall be taken from the least significant

eight bits (Bits 8:15) of the Register specified by R2. The Condition
Code shall remain unchanged.

Store Bvte: The Store Byte (STB, STBR) instructions shall cause the
right-most (least significant) eight-bit byte of the first operand to be
stored in the General Register or core memory location apecified by
the second operand. The first operand shall be unchanged. In the
Register-to-Register (RR) form of this instruction, the left-most byte
of R2, (0:7), shall be unchanged; the eight-bit quantity shall be stored in
Bits 8:15 of the register specified by R2. The Condition Code shall
remain unchanged.

Exchange Byte: The Exchange Byte Register (EXBR) instruction shall
cause the two eight-bit bytes of the second operand to be exchanged and
loaded into the General Register specified by R1. The contents of R2
shall remain unchanged. R1 and R2 may specify the same register.
The Condition Code shall remain unchanged,

Compare Logical Byte: The Compare Logical Byte (CLB) instruction
shall cause the least significant eight-bit byte of the first operand to be
logically compared to the eight-bit second operand. The result shall be
indicated by the setting of the Condition Code [PSW (12:15)] . Neither
operand shall be changed. The Condition Code setting shall be:

C|V|G|L

First operand equals second operand.

} First operand less than second operand.

0
1
1
0
0

KoM oM M X
- © M o ©
© = © H o

} First operand is greater than second operand.

A10-22

AO0K-001
Volume 1 of 1
8 June 1981

LOAD BYTE
LBR R1, R2 R1 (8:15)=e——R2 (l:lS)
R1 (0:7)%———ZERO
'] 7|8 11112 15
93 R1 R2 [BR]
LB R1, A2 (X2) R1 (B:15)—vo I(AZ + (X2)]
R1 (0:7) @ ZERO
[+] [] 11112 1516 31
D3 Rl x2 A2
STORE BYTE
STBR R1,R2 [R1(8:15)}—+=R2 (8:15)
("] 7]8 11112 1
92 R1 R2 [RR]
s5TB R1, A2 (X2) [R1 {8:15)}—a={A2 + (X2)]
0 7|8 11]12 15|16 31
D2 R1 x2 A2
EXCHANGE BYTE
EXBR R1, R2 R1 (0:7) #——R2 (8:15)
R1 (8:15)e——R2 (0:7)
0 78 11§12 15
94 R1 R2 [RR]
COMPARE LOGICAL BYTE
cLe R1, A2 (X2) R1 (8:15) : [A2 + (X2)]
0 7|8 - 1112 15]16 31
D4 R1 x2 A2

Figure 10.5-1.

Byte Handling Instructions

[RX]

[RX]

(RX)

HGI-2852L

A10-23

AOOK-001
Volume 1 of 1
8 June 1981

10.6 Shift/Rotate Instructions. The item shall execute the Shift/Rotate
instructions to provide for arithmetic and logical manipulation of information
contained in the General Registers. Instructions for halfword and fullword
operands shall be provided. Bits ghifted out of the high or low order end of a
General Register shall be pagsed through the Carry Bit posgition of the Condition
Code., After execution of a Shift ingtruction, the last bit which was shifted out
shall be contained in the Carry position. The fullword Shift and Rotate instructions
shall manipulate a pair of General Registers. The R1 field of these instructions
must specify an even-numbered register. The register specified shall contain the
most significant 16 bits of the fullword operand. The next sequential general
register shall contain the least significant 16 bits. A shift of zero positions shall
cause the Condition Code to be set propzrly with no alteration to the information
contained in the General Register. The Shift/Rotate instructions shall use the SF
and RI formats. The exact format, op-code, assembler notation and diagram-
matic representation of each instruction shall be ag shown in Figures 10.6-1,

-2, -3, -4, -5, and ~6. The operation and resulting Condition Code shall be as
follows:

a. Shift Left Logical: The Shift Left Logical (SLL, SLLS, SLHL)
ingtructions shall cause the content of the first operand to be shifted
left the number of positions specified by the second operand. High order
bits shifted out of Position 0 shall be shifted through the Carry Bit of the
PSW and then lost, Zeros shall be shifted into the low order bit position.
The last bit shifted shall remain in the Carry Bit. For the Shift Left
Logical Short (SLLS) instruction, the N field (Bits 12 through 15) of the
instruction shall specify the number of positions the content of R1 is to
be shifted. For the Shift Left Halfword Logical (SLHL) instruction, only
the low order four-bits (12 through 15) of I12+(X2) shall be used for the
shift count. The Shift Left Logical (SLL) instruction shall shift
Registers R1 and R1+1, an even-odd pair. The R1 field of the instruction
shall specify an even register. The shift count shall be specified by the
low order five-bits (11 through 15) of the value I2+(X2), The Carry shall
be formed by the output of R1. The resulting Condition Code shall be:

The resulting Condition Code shall be:

C|V|G|L

0|01 0 . Result is zero.

001 Result is not zero.

o 1|0 Result ig not zero.
0 Last bit that was shifted out was a zero.
1 ’ Last bit that was shifted out was a one.

When the first operand ig ¥Fixed-Point data, the L flag set indicates a
negative result, the G flag indicates a positive result.

A10-24

SHIFT LEFT LOGICAL
SLLS R1, N

AOOK-001

Volume 1 of 1

8 June 1981

0 718 1112 15
91 R1 N ISF]
SLHL R1,12 (X2)
0 7|8 11512 15[16 31
co R1 X2 12
SLL R1,12(X2)
[) 7|8 11112 - 15)16 31
EO R1 x2 12
SHIFT RIGHT LOGICAL
R R1,
0 718 11)12 15
90 R1 N (SF)
SRHL R1,12 (X2)
(] 7|8 1112 15116 31
cc R1 X2 12
SRL R1,12(X2)
0 718 11132 15116 31
EC R1 X2 | 12

Figure 10.6-1. Logical Shift Instructions

[RI]

(R1]

[RI]

[R1)

EE-ZVOEL

A10-25

AOOK-001
Volume 1 of 1

8 June 1981
SHIFT LEFT LOGICAL
0 15
o
{R1)
£
| b
1 |
(©) SLLS AND SLHL
0 15,16 31
(R1) (R1+1)
‘ L
©) sL
SHIFT RIGHT LOGICAL
o 15
(R1)
L
J]
SKRLS AND SRHL ©
]
31
(R1) (R1 +1)
L
|
SRL <)
Figure 10.6-2. Logical Shifts Mlustration
ROTATE LEFT LOGICAL o
RLL R1, 12 (X2) §
0 7,8 1112 15,16 ; 3 ::
(%]
EB R1 X2 12 [RI] .
ROTATE RIGHT LOGICAL
RRL R1, 12(X2)
7,8 11,12 15,16 31
EA R1 X2 12 (RI]

Figure 10.6-3. Logical Rotate Instructions

A10-26

AQOK-001
Volume 1 of 1

8 June 1981
ROTATE LEFT LOGICAL
0 15116 31
(R1) (R1+1)
ks |
| RLL l
ROTATE RIGHT I.DGIC{\I.
[+] 15 |16 31
(R1) (R1+1)
RLL
Figure 10.6-4. Logical Rotate Hlustration
SHIFT LEFT ARITHMETIC
SLHA R1,12 (X2) Py
) 7|8 112 1516 31 3
cF R1 x2 12 (RI) &
SLA R1,12 (X2)
0 7 1112 1526 31
EF R1 2 12 [R1]
SHIFT RIGHT ARITHMETIC
SRHA R1, 12 (X2)
0 78 12 1516 31
CE R1 x2 12 (RI]
SRA R1, 12 (X2)
0 L L) 11j12 15116 31
EE R1 x2 12 [RI]
Figure 10.6-5. Arithmetic Shift Instructions

9¢-ZYOEL

A10-27

AOOK-001

Volume 1 of 1

8 June 1981
SHIFT LEFT ARITHMETIC
0 15
s (R1)
1
s 1
<) SLHA
o1 15]16 31
s {(R1) (R1+1)
|
q
<
SLA
SHIFT RIGHT ARITHMETIC
! - 15
5 {R1)
1
F
SRHA (©)
15[16 2
= (R1) (R1+1)
1
| SRA
Figure 10.6-6. Arithmetic Shift llustration (€

PE-ZYOEL

A10-28

bl

AOOK-001
Volume 1 of 1
8 June 1981

Shift Right Logical: The Shift Right Logical (SRL SRLS, SRHL)
instructions shall cause the content of the first operand to be shifted
right the number of bit positions specified by the second operand. Low
order bits shifted out of Position 15 for the halfword instructions or
Position 31 for the fullword instruction shall be shifted thru the Carry
Bit of the PSW and then lost. Zeros shall be shifted into Position 0.
The last bit shifted shall remain in the Carry Bit, For the Shift Right
Logical Short (SRLS) instruction, the N field (Bits 12 through 15) of the
instruction shall specify the number of positions the content of R1 is to
be shifted. For the Shift Right Halfword Logical instruction, only the
low order four bits (12-15) of 12+(X2) shall be used for the shift count.
The Shift Right Logical (SRL) instruction shall shift Registers R1 and
R1+1, an even-odd pair., The R1 field of the instruction shall specify
an even register. The shift count shall be specified by the low order
five bits (11 through 15) of the value 12+(X2), The Carry shall be
formed by the output of R1. The resulting Condition Code shall be:

C|l V]| G| L
ojof| o Result is zero,
00| 1 Result is not zero.
o|j1|0 Result is not zero.,
0 Last bit that was shifted out was a zero.
Last bit that was shifted out was a one.

Rotate Left Logical: The Rotate Left Logical (RLL) instruction shall
cause the 32-bit first operand specified by R1 to be shifted left, end
around, the number of positions specified by the low order five bits of
the value I2+(X2). All 32-bits of the fullword shall be shifted. Bits
shifted out of Position 0 shall be shifted into Position 31. A shift
specification of 16-bits shall interchange the two halves (R1, R1+1) of
the first operand. The Rotate Left Logical (RLL) instruction shall
rotate Registers R1 and R1+1, an even-odd pair. The R1 field of the
instruction shall specify an even register. The resulting Condition
Code shall be:

C| V|G| L

o0 O0f O Result is zero.,
0|0 1] 0 Result is not zero.
o 0| O 1 Result is not zero.,

A10-29

AOOK-001
Volume 1 of 1
8 June 1981

Rotate Right Logical: The Rotate Right Logical (RRL) instruction shall
cause the 32-bit first operand specified by R1 to be shifted right, end
around, the number of positions specified by the low order five bits of
the value I12+(X2). All 32-bits of the fullword shall be shifted. Bits
shifted out of Position 31 shall be shifted into Position 0. A sghift
specification of 16-bits shall interchange the two halves (R1, R1+1) of
the first operand. The Rotate Right Logical (RRL) instruction, rotates
Registers R1 and R1+1, an even-odd pair. The R1 field of the instruc-

tion shall specify an even register. The resulting Condition Code shall
be:

Result is zero.

Result is not zero.

o o ol|ln

v
0
0
0

G
0
1
0

= o oM

Result is not zero.

Shift Left Arithmetic: The Shift Left Arithmetic (SLA, . SLHA) instruction
shall cause the content of the first operand to be shifted left the number of
bit positions specified by the second operand. The Sign Bit ghall be
unchanged. High order bits shifted out of Position 1 shall be shifted
through the Carry Bit of the PSW and then lost. Zeros shall be shifted
into the low order bit position. For the Shift Left Halfword Arithmetic
(SLHA) instruction, the shift count shall be specified by the low order
four-bits (12 through 15) of the value of 12+(X2), The Shift Left Arithmetic
(SLA) instruction shall shift Registers R1 and R1+1, an even-odd pair.

R1 shall specify an even register. The shift count shall be specified by
the low order five-bits (11 through 15) of the value of I12+(X2). The
resulting Condition Code shall be:

C|V |G| L

0]0]0 Result is zero.

0]0]1 Result is less than zero.

0|1]0 Result is greater than zero,
0 Last bit that was shifted out was a zero.
1 Last bit that was shifted out was a one.

A10-30

AQ0K-001
Volume 1 of 1
8 June 1981

Shift Right Arithmetic: The Shift Right Arithmetic (SRA, SRHA)
instruction shall cause the content of the first operand to be shifted
right the number of bit positions specified by the second operand.

The Sign Bit, Bit 0, of R1 shall be unchanged and shall be shifted
right into Bit 1; therefore, Bit 0, shall be propagated right as many
positions as specified by the second operand. Low order bits of the
first operand shall be shifted through the Carry Bit of the PSW and
then lost. For the Shift Right Halfword Arithmetic (SRHA) instruction,
the shift count shall be specified by the low order four-bits (12
through 15) of the value of 124(X2). The Shift Right Arithmetic (SRA)
instruction, shall shift Registers R1 and R1+1, an even-odd pair.

R1 shall specify an even register., The shift count shall be specified
by the low order five-bits (11 through 15) of the value of 12+(X2). The
Carry shall be formed by the output of R1+1 instead of R1. The resulting
Condition Code shall be:

C|V|G|L

ofof|o Result is zero.

001 Result is less than zero.

0 1(0O0 Result is greater than zero.
0 Last bit that was shifted out was a zero.
1 Last bit that was shifted out was a one.

A10-31

AQOK-001
Volume 1 of 1
8 June 1981

10.7 Branch Instructions. The item shall execute the Branch instructions to
provide programmed decisions for entry to subprograms, as well as testing the
result of arithmetic, logical, or indexing operations. Many processor operations
result in setting of the Condition Code in the Program Status Word. The Branch
on Condition instructions shall implement the testing of the Condition Code
through use of a mask field contained in the instruction itself (M1 field). The
4-bit M1 field shall contain an image of the Condition Code to be tested. The
Branch instructions shall use the RX, RR, and SF formats. The exact format,
op-code, assembler notation and diagrammatic representation of each instruction

shall be as shown in Figures 10.7-1, -2 and -3. The operation and resulting
Condition Code shall be as follows:

a. Branch on True: The Branch on True (BTBS, BTFS, BTCR, BTC)
instructions shall cause the Condition Code field of the Program Status
Word PSW (12:15) to be tested for the condition specified by the Mask
Field (M1). If any of the conditions tested are found to be true, a Branch
shall be executed to the 16-bit address specified by the second operand.
If none of the conditions tested are found to be true the next sequential
instruction shall be executed. A logical AND shall be performed between
each bit in the Condition Coede and its corresponding bit in the M1 field.
If any resultant bit ie a one, the Branch shall occur. The Condition
Code [PSW (12:15)] shall not be changed. For example, if the Condition
Code is 1010 and the M1 field is 1000, the Branch occurs with Branch
on True instructions. The Branch on True Backward Short (BTBS)
instruction shall cause a Branch to an address relative to the present
Location Counter when the tested condition is true. The displacement
shall be specified by the N field (Bits 12 through 15) of the instruction.
The N field (times two) shall be subtracted from the present Location
Counter to generate the address of the next instruction. The Branch on
True Forward Short (BTFS) instruction, shall cause a Branch to an
address relative to the present Location Counter when the tested condi-
tion is true. The displacement shall be specified by the N field (Bits 12
through 15) of the instruction. The N field (times two) shall be added to
the present Location Counter to generate the address of the next instruc-
tion. The Short Branch instructions (e.g., BTBS), are appropriate for
Branches which specify small displacements from the present Location

Counter, for example, in sense status loops used for program controlled
1/0.

b. Branch on False: The Branch on False (BFBS, BFFS, BFCR, BFC)
instructions shall cause the Condition Code field of the Program Status
Word [PSW (12:15)] to be tested for the condition specified by the mask
field (M1). If all conditions tested are found to be false, a Branch shall
be executed to the 16-bit address specified by the second operand.. If
any of the conditions tested are found to be true the next sequential
instruction shall be executed. A logical AND shall be performed between
each bit in the Condition Code and its corresponding bit in the M1 field.
If any resultant bit is a one, the Branch shall not occur. The Condition
Code [PSW (12:15)] shall not be changed. For example, if the Condition
Code is 1010 and the M1 field is 1100, the Branch does not occur with
the Branch on False instruction. The Branch on False Backward

A10-32

BRANCH ON TRUE CONDITION

AO0K-001

Volume 1 of 1

8 June 1981

BTFS M1, D TRUE: [PSW (16:31) }=s——— [PSW (16:31)) + 2D
FALSE: [PSW (16:31)) Ivsw (16:31)) + 2
0 718 11)12 15
20 M1) [SF)
BTBS M1,D TRUE: [PSW (16:31)}———[PSW (16:31)] -2D
*FALSE: [PSW (16:31)]s——— [PSW (16:31)] +2
o 718 11|12 15
21 M1 D [SF)
BTCR M1, R2 TRUE: [PSW (16:31)]<e—— (R2)
FALSE: [PSW (16:31))<e—— [PSW (16:31)] +2
(1] 7,8 11§12 15
02 M1 R2 [RR]
BTC M1, A2 (X2) TRUE: [PS-W (16:31))=s—— A2 + [X2)
FALSE: [PSW (16:31)]-e—— [PSW (16:31)] 44
(1] 718 11112 15|16 31
42 M1 X2 A2
BFBS M1,D FALSE: [PSW (16:31))-e— [PSW (16:31)] - 2D
TRUE: [PSW (16:31)]==— [PSW (16:31)] + 2
o 718 1112 15
22 M1 D [SF)
BRANCH ON FALSE CONDITION
BFFS M1, D FALSE [PS5W (16:31)]-—— [PSW (16:31)] +20
TRUE: [PSW (16:31)]<—— [PSW (16:31)] +2
o 7|8 11112 15
23 M1 D [SF)
BFCR M1, R2 FALSE: [PSW (16:31)]<e—— (R2)
TRUE [PSW (16:31)]s—— [PSW (16:31)] +2
0 7,8 11§12 15
03 M1 R2 [RR]
BFC M1, A2(X2) FALSE: [PSW (16:31))-e—— A2 + (X2)
TRUE: [PSW (16:31)]e—— [PSW (16:31)] +4
0 7|8 11§12 15116 31
43 M1 X2 A2

Figure 10.7-1. Branch on True/False Instructions

[RX]

(RX)

H9T1-28S2L

A10-33

AOOK-001
Volume 1 of 1
8 June 1981

BRANCH ON INDEX
BXH R1, A2 (X2) (R1)=— (R1) + (R1 + 1)
(R1) : (R1 +2)
IF (R1) > (R1 + 2), THEN [PSW (16:31)] ==—A2 + (X2)
IF (R1) (R1 + 2), THEN [PSW (16:31)] =—[PSW (16:31)] +4
0 78 11412 15]16 31
co R1 w2 A2 [RX]
BXLE R1, A2 (X2) (R1)=s—{R1) + (R1) !
(R1) : (R1 + 2)
\F (R1)< (R1 + 2), THEN [PSW (16:31)]-=— A2 + (X2)
{R1) >(R1 + 2), THEN [PSW (16:31)] ==~ [PSW (16:31)] +4
0 75 11n2 15016 31
c1 R1 X2 A2 [RX]
Figure 10.7-2. Branch on Index Instructions
BRANCH AND LINK
BALR R1, R2 (R1}e———[PSW (16:31)] +2
[PSW(16:31) <t—v (R2)
o 7|18 1112 15
01 R1 R2 [RR]
BAL R1, A2(X2) (R1) <@—— [PSW (16:31)] +4
[PSW (16:31)]) st AZ + (X2)
0 7|8 11{12 15l18 31
41 R1 X2 A2 [RX]

Figure 10.7-3. Branch and Link Instructions

HiT-Z@S2L

HBI-28STL

A10-34

AOOK-001
Volume 1 of 1
8 June 1981

Short (BFBS) instruction shall cause a Branch to an address relative

to the present Location Counter when the tested condition is false. The
displacement shall be specified by the N field (Bits 12 through 15) of
the instruction. The N field (times two) shall be subtracted from the
present Location Counter to generate the address of the next instruction.
The Branch on False Forward Short (BFFS) instruction shall cause a
Branch to an address relative to the present Location Counter when the
tested condition is false. The displacement shall be specified by the

N field (Bits 12 through 15) of the instruction. The N field (times two)
shall be added to the present Location Counter to generate the address
of the next instruction., Branch on False Condition with a mask of 0
shall be an Unconditional Branch.

Branch on Index: The Branch on Index High (BLH) instruction and the
Branch on Index Low or Equal (BXLE) instruction shall cause the index
(R1) to be incremented by (R1+1) and logically compared to the index
limit, (R1+2). Prior to execution of this instruction, the General
Register specified by the first operand (R1) shall contain a 16-bit start-
ing index value, R1+1 shall contain a 16-bit increment value, and R1+2
shall contain a 16-bit comparand (limit or final value). All values shall
be signed. For the Branch on Index High (BXH) instruction, the contents
of R1+1 should be negative. As long as the index (R1) is greater than

the limit (R1+2), the 16-bit address specified by the second operand shall
be transferred to the instruction address field of the Program Status
Word [PSW (16:31)]). The next instruction executed shall be accessed
from the location specified by the new instruction address. When the
count is not greater than the index limit, the instruction following Branch
on Index High shall be executed. For the Branch on Index Low or Equal
(BXLE) instruction, the contents of R1+1 should be positive. As long as
the index (R1) is equal to or less than the limit (R142), the 16-bit address
specified by the second operand shall be transferred to the instruction
address field of the Program Status Word [PSW (16:31)]. The next
instruction executed shall be accessed from the location specified by the
new instruction address. When the count is greater than the limit,

the instruction following Branch on Index Low shall be executed. The
Branch on Index High and Branch on Index Low instructions are appro-
priate for rapid loop control, particularly when one or more of the
instructions in the loop is indexed. General Register 13 is the maximum
specification for the Rl field. The Condition Code shall remain
unchanged.

Branch and Link: The Branch and Link (BAL and BALR) instructions
shall cause the address of the next sequential instruction to be saved in
the General Register specified by the first operand (R1), and an Uncon-
ditional Branch to be executed to the 16-bit address specified by the
second operand. The effective second operand shall be derived before

the contents of register R1 are changed. The Branch and Link instruc-
tion may be used for entry to subprograms. It differs from the Branch
Unconditional instruction in that the incremented Location Counter value
is preserved in a specified General Register to be used as the subprogram

A10-35

AOOK-001

Volume 1 of 1
8 June 1981

exit address. Exit from the subprogram is effected by a Branch
Unconditional instruction through the General Register in which the exit
address has been maintained. The effective second operand is derived
before the contents of R1 are changed. The Condition Code shall remain
unchanged.

10.8 Floating-Point Instructions. The item shall execute the Floating-Point
instructions to provide for loading, storing, adding, subtracting, multiplying,
dividing, and comparing of floating-point operands. In order to produce correct
normalized results, the Arithmetic instructions require normalized floating-
point operands. If the operands are not normalized (with the exception of the
floating-point load instructions), the results of the instructions are undefined.
The Floating-Point Load instruction shall normalize an unnormalized floating-
point number. The Floating-Point instructions shall manipulate 32-bit operands.
The data format for the operands shall be as specified in 3.2.1.1.1.3. The R1
and R2 fields of the Floating-Point ingtructions shall specify floating-point
registers. These floating-point registers shall be reserved-memory locations.

The Floating-Point instructions shall use the RR, and RX formats. The exact
format, op-cede, assembler notation and diagrammatic representation of each
instruction shail be as shown in Figures 10.8-1 and -2. The operation and
resulting Condition Code shall be as follows:

a. Floating-Point Load: The Floating-Point Load (LE and LER) instructions
shall cause the floating point second operand to be normalized and placed
in the floating point register R1. During normalization the fraction shall
be shifted left 4 bits at a time until the most significant hexidecimal
digit is not zero. The exponent shall be decremented by one for each
shift required. Zeros shall be shifted into the least significant bit
positions of the fraction. If the fraction is zero, a true zero shall be
generated. The second operand shall remain unchanged. If normaliza-
tion causes exponent underflow, the result shall be set to a true zero,
and the Overflow (V) flag is set. In the event of exponent underflow, a
Floating-Point Arithmetic Fault Interrupt shall occur, if enabled by
Bit 5 of the PSW. The resulting Condition Code shall be:

C|V|G|L

X |00 0 Zero.

X100 |1 Less than zero.
X|0(|17]0 Greater than zero.
X11/1010 Exponent underflow.

b. Floating-Point Store: The Floating-Point Store (STE) instruction shall
cause the floating-point first operand to be placed in the memory
location specified by A2 + (¥2). The first operand shall remain
unchanged. The resulting Condition Code shall remain unchanged.

A10-36

AQOK-001

Volume 1 of 1

8 June 1981

FLOATING-POINT LOAD N
LER R1, R2 {R1) o (R2) A
0 7j8 1112 15 »
28 R1 R2 (RR] b
LE R1, A2 (X2) (Rl)e—— [A2 + (X2)]
0 718 1112 15116 31
(1} R1 1 x2 A2 [RX]
-POIN
e e ORE |—— (A2 + }X2)] = (R1)
0 78 11j12 15116 31
60 R1 | x2 | A2 [RX]
FLOATING-POINT ADD
AER R1, R2 (R1}e— (R1) + (R2)
0 ne 11j12 15
2A R1 R2 [RR])
AE R1, A2(X2) (R1}e——(R1) + [A2 +(X2))
0 718 11j12 15116 31
6A R1 x2 A2 [RX)
FLOATING-POINT SUBTRACT
SER R1, R2 (R1)e—(R1) - (R2)
0 8 11§12 15
28 R1 R2 [RR]
SE R1,A2(X2) (R1)e—— (R1) - [A2 + (X2)]
0 718 1112 1516 31
6B R1 X2 | A2 [RX]

Figure 10.8-1. Floating-Point Load/Store/Add/Subtract Instructions

A10-37

Volume 1 of 1

8 June 1981
FLOATING-POINT COMPARE
CER R1, R2 (R1) : (R2)
o 12 1
29 I R1 R2 [RR]
CE R1, AZ(X2) (R1) : [A2 + (X2)])
o 11112 1516 31
69 T R1 x2 zl A2]l“xl
FLOATING-POINT MULTIPLY
Mlé?t " R1, R2 (R1}s——R1) * (R2)
(] 718 11112 1
2c R1 R2 [RR]
E R1, A2 (X2) (R1)=——(R1) * [A2 + (%2)]
') 718 1112 15116 i 31
6C R1 x2 y A2 [RX]
FLOATING-POINT DIVIDE
DER R1, R2 (R1}=—(R1)/({R2)
/] 5 b 2 1
2D T R1 R2 [RR]
DE RI, A2 (X2) (R1)a——{R1)/[A2 + {X2)]
[1) 718 11§12 15116 31
6D r- R1 x2 A2 (RX]

Figure 10.8-2. Floating-Point ComparelMultiply!Dividc Instructions

A10-38

AOOK~001
Volume 1 of 1
8 June 1981

Floating-Point Add: The Floating-Point Add (AE and AER) instructions
shall cause the following to occur. The exponents of the two operands
shall be compared. If the exponents differ, the fraction with the smaller
exponent shall be shifted right 4 bits at a time, and its exponent shall be
incremented by one for each shift until the two exponents agree. The
fractions shall then be added algebraically. If a carry results, the
exponent of the sum shall be incremented by one; the fraction shall be
shifted right 4 bits and the carry shall be shifted into the most significant
hex digit. If an exponent overflow results, the exponent and fraction of
the result shall be set to the maximum value and the Overflow (V) flag
shall be set. The sign of the result shall not be affected by the overflow.
If no carry results from the addition of the fractions, the sum shall be
normalized. During normalization, the fraction shall be shifted left

4 bits at a time until the most significant hex digit is not zero. The
exponent shall be decremented by one for each shift required. Zeros
shall be shifted into the least significant bit positions of the fraction.

If normalization causes exponent underflow, a true zero shall be
generated and the Overflow (V) flag is set. If a zero sum is generated
by adding equal fractions with opposite signs, a true zero shall be
generated. In the event of exponent overflow or underflow, the Floating
Point Arithmetic Fault Interrupt shall occur, if enabled by Bit 5 of

the PSW. The resulting Condition Code shall be:

V|G| L

Sum is zero.

Sum is less than zero.

Exponent Overflow (negative)

WKWoX X X XA
- - © © ©

0o
0|1
110 Sum is greater than zero.
0 |1
1|0

Exponent Overflow (positive)
X|1[0(|0 Exponent Underflow,

Floating-Point Subtract: The Floating-Point Subtract (SE and SER)
instructions shall cause the following to occur. The exponents of the two
operands are compared. If the exponents differ, the fraction with the
smaller exponent is shifted right hexadecimally (four-bits at a time), and
its exponent is incremented by one for each hexadecimal shift until the
two exponents agree. The fractions are then subtracted algebraically.

If a Carry results, the exponent of the difference is incremented by one
and the fraction (result) is shifted right one hexadecimal position (four-
bits). The Carry is shifted into the most significant hexadecimal digit

of the fraction. If an exponent cverflow occurs, the exponent and fraction
of the result are set to all ones, and the Overflow flag is set. The sign
of the result is not affected by the overflow. If no Carry results from the
subtraction of fractions, the difference is normalized by shifting the frac-
tion left hexadecimally (four-bits at a time) until the most significant hexa-
decimal digit is not zero. The exponent is decremented by one for each

A10-39

A00K-001
Volume 1 of 1
8 June 1981

hexadecimal shift required. Zeros are shifted into the least significant
hexadecimal digit of the fraction. If the normalization causes exponent
underflow, the entire floating-point result is set to zero, and the Over-
flow flag is set. In the event of exponent overflow or underflow, the
Floating-Point Arithemetic Fault Interrupt shall occur, if enabled by
Bit 5 of the PSW. The resulting Condition Code shall be:

C|V|G| L

X|0j10¢{0 Difference is zero.
X|10]0]1 Difference is less than zero.
X|0{1]0 Difference is greater than zero.
X|{1]1011 Exponent overflow (negative).
X110 Exponent overflow (positive).
X114{0}]0 Exponent underflow.

Floating-Point Compare: The Floating-Point Compare (CE and CER)
Thafeiotions shall cause the first operand to be compared to the second
operand. The comparison shall be algebraic, taking into account the
sign, fraction, and exponent of each operand. - Both operands shall
remain unchanged. The result shall be indicated by the setting of the
Condition Code. The resulting Condition Code shall be:

First less than second.

o = o |0
Mo o<
- o oM

L
0 Operands equal.
1
0

First greater than second.

Floating Point Multiply: The Floating Point Multiply (ME and MER)
instructions shall cause the following to occur. The exponents of the two
operands are added to produce the exponent of the result. The resultant
exponent is readjusted to excess 64 notation. If an exponent overflow
occurs, the exponent and fraction of the product are set to ones, and the
Overflow flag is set. The sign of the product is determined by the rules
of algebra. If an exponent underflow occurs, the entire floating-point
result is set to zero, and the Overflow flag is set. In either event, the
Floating-Point Arithemetic Fault Interrupt is caused, if enabled by Bit 5
in the PSW. If an exponent overflow or underflow does not occur, the
multiplication takes place. If the product is zero, the entire floating-
point result is zero. If the result is not zero, normalization may occur.
During normalization, the fraction is shifted left hexadecimally (four-
bits at a time) until the most significant hexadecimal digit is not zero.
The exponent of the result is decremented by one for each hexadecimal

A10-40

AOOK-001
Volume 1 of 1
8 June 1981

shift required., After normalization, the product is rounded to 24-bits,
If normalization causes the exponent to underflow, the entire floating-
point result is set to zero, and the Overflow flag is set. The sum of the
exponents of the two operands must be less than 64, or overflow occurs,
producing the maximum possible value as a product. For examptlse, the
multiplication 1/2 x 1653% 1 = 1/2 x 1663% 1/16 x 161 = 1/32 x 1654
causes an overflow, rather than the result 1/2 x 1663, The resulting
Condition Code shall be:

C|VI|IG|L
0 [0 | Product is zero.
0 (1 | Product is less than zero.
1 |0 | Product is greater than zero.
1 |X [X | Exponentoverflow. .
1|0 [0 | Exponent underflow.

Floating Point Divide: The Floating Point Divide (DE and DER) instruc-
tions shall cause the following to occur. The exponents of the two oper-
ands are subtracted to produce the exponent of the result. The resultant
exponent is readjusted to excess 64 notation. If an exponent overflow
occurs, the exponent and fraction of the quotient are set to all ones, and
the Overflow flag is set. The sign of the quotient is determined by the
rules of algebra. If an exponent overflow occurs, the entire floating-
point result is set to zero, and the Overflow flag is set. If the divisor
(the second operand) is zero, the operands are unchanged. In the event
of exponent overflow, underflow, or division by zero; the Floating-Point
Arithmetic Fault Interrupt is caused, if enabled by Bit 5 of the PSW., If
the exponent overflow or underflow does not occur, and if the divisor is
not zero, the second operand is divided into the first operand. Division
continues until the quotient is normalized, adjusting the exponent for each
additional division required. If an exponent underflow occurs, the entire
floating-point result is set to zero, and the Overflow flag is set. No
remainder is returned to the user. The quotient is rounded to compen-
sate for the loss of the remainder. Division by zero, overflow, or under-
flow cause a Floating-Point Arithmetic Fault Interrupt, if enabled by

Bit 5 of the PSW. Inspection of the Condition Code of the Old PSW indi-
cates the actual cause of the interrupt. If the Carry flag is set, then the
divisor was zero. If the Carry flag is not set, then either overflow or
underflow caused the interrupt. In this case, if the Greater than (G) or
Less than (L) flag is set, the interrupt was caused by an overflow. If

the G and L flag is reset, the interrupt was caused by an underflow. The
difference of the exponents of the two operands must be less than 64, or
overflow occurs, producing the maximum possible values as a quotient,
even when normalization of the computed mantissa would bring the result-
ant exponent within range. The resulting Condition Code shall be,

A10-41

AOOK-001
Volume 1 of 1
8 June 1981

C|]V|G|L
0 | 0| Quotient is zero.
0 | 1| Quotient is less than zero.
1 | 0| Quotient is greater than zero.
1 | 1 | X|) Exponent overflow.
1 X1
1] 0| 0| Exponentunderflow.
1 1] 0| 0f Divisor Equal to zero.

10.9 System Control Instructions. The item shall execute the System Control
instructions to provide a means for the program to set the Program Status Word
swap PSW's, trigger special interrupt handling, and communicate with a
supervisor program. Two instructions shall be provided to control the memory
bank switching scheme in the item. These two instructions shall be included to
extend the addressing range from 32, 768 halfwords to 131,072 halfwords. Some
of the System Control instructions are privileged and may be executed only with
the Processor in the Supervisor Mode (i.e., Bit 7 of the PSW reset). Any
attempt to execute these instructions in the Protect Mode results in an Illegal
Instruction Interrupt. The System Control instructions shall use the Register to
Register (RR), the Short Format (SF), the Register to Indexed Storage (RX), and
the Register and Immediate Storage (RI) formats. The exact format, op-code,
assembler notation and diagrammatic representation of each instruction shall be
as shown in Figure 10.9-1. The operation and resulting Condition Code shall

be as follows:

a. Load Program Status Word: The Load Program Status Word (LPSW)
instruction shall cause a 32-bit operand to be loaded into the Current
Program Status Word. The second operand shall remain unchanged.
The resulting Condition Code shall be determined by the PSW loaded by
the instruction. This instruction shall be privileged. The R1 field of
a Load PSW instruction shall contain 0.

b. Exchange Operand Bank Address: The Exchange Operand Bank Address
(EPOR) instruction shall cause the PSW (10:11) to be modified by the
bits in the register specified by R1. The bits shall be exchanged between
Rl and the PSW. R2 shall be ignored. The Condition Code shall remain
unchanged.

c. Exchange Program Address: The Exchange Program Address (EPPR)
instruction shall cause the PSW (8:11 and 15 :31) to be modified by the
bits in registers specified in R1 and R1+1. The former value of the
PSW (0:31) shall be stored in R1 and R1+1. This instruction is useful
in interbank transfers. R2 shall be ignored. The Condition Code shall
remain unchanged.

A10-42

AO0K-001
Volume 1 of 1

8 June 1981
LOAD PROGRAM STATUS WORD)
LPSW A2(X2) [PSW (0:31)) =—— [AZ + (X2))
0 11,12 15,16 n
c2 0 X2 A2 (RX]
EXCHANGE OPERAND BANK ADDRESS
EPOR R], R2 [PSW (10111)]<—— [R1 (10:11))
[R1 (00:15)] <o——— FORMER [PSW (0:15)]
0 1112 15
2E R1 R2 [RR]
EXCHANGE PROGRAM ADDRESS
EPPR R1, R2 [PSW (8:11)) =——— R1 (8:11)
lnw (16:31))=——R1 + 1
R1l=——FORMER [PSW (0:15))
R1 + 1<e=FORMER [PSW (16:31))
0 11 12 15
2F R1 R2 [RR]
EXCHANGE PROGRAM STATUS
EPSR R1,R2 PSW (0:15)) ————R1
PSW (0:15) @«———R2
0 11 ,12 15
95 R1 R2 [RR]).
SIMULATE INTERRUPT
SINT 12 (X2)
o 11,12 1516 31
E2] x2 12 [R1)
SUPERVISOR CALL
sve R1, 12 (X2) X'0094') @ |2 + (X2)
(X'0096") @—————— [PSW (0:31)]
(X'00PA") =t [PSW (0:15)]
(X'009C" + 2 * R1)—o-[PSW (16:31)]
0 1112 15416 31
El R1 x2 12 [RI]

Figure 10,9-1. System Control Instructions

HO0Z-Z8SZL

A10-43

AQOK-001
Volume 1 of 1
8 June 1981

d. Exchange Program Status: The Exchange Program Status (EPSR)
instruction shall cause the Current Program Status, PSW (0:15), to be
stored into the register specified by R1. The content of R2 shall then
become the Current Program Status, PSW (0:15) . Note that if R1 = R2,
this results in the Program Status being copied into R1, but otherwise
remaining unchanged. This instruction is useful for capturing the running
Program Status, enabling or disabling interrupts, or loading the Condition
Code with a specified value. This instruction shall be privileged. The
Condition Code shall be defined by the New PSW.

e. Simulate Interrupt: The Simulate Interrupt (SINT) instruction shall cause
the least significant eight-bits of the second operand, 12 + (X2), to be
presented to the Interrupt Handler (software) as a device number. The
device number shall index into the Service Pointer Table at X'00D0' and
result in either an Immediate Interrupt or an I/O Channel operation as
described in 3.2.1.1.9.4.c and 3.2.1.3. 2.1 respectively. This instruc-
tion shall be privileged. The R1 field of a Simulate Interrupt instruction
shall contain 0.

f. Supervisor Call: The Supervisor Czll (SVC) instruction shall provide a
means for initiating software functions in the Executive program. The
second operand address, A2 + (X2), shall serve as a pointer to the
memory location of the parameters the Executive program will need to
complete the function specified. The value, A2 + (X2), shall be stored
in memory location X'0094', The Current Program Status Word shall
be stored in the fullword memory location at X'0096'. Memory location
X'009A' shall contain the New Program Status value. Memory locations
X'009C' through X'00BB' shall contain sixteen new Location Counter
values, one for each type of Supervisor call. The type of Supervisor
shall be specified in the R1 field of the instruction. Sixteen different
calls shall be provided for. Return from the Executive program shall
be made by executing a Load Program Status Word instruction specifying
the stored "Old" PSW in location X'0096'. This instruction provides a
convenient means of switching from the Protect Mode to the Supervisor
Mode. Return to the Protect Mode is accomplished by a Load Program
Status Word or Exchange Program Status instruction. The resulting
Condition Code shall be defined by the New PSW.

10.10 Input/Output Instructions. The item shall execute the Input/Output instruc-
tions to provide for the transfer of data between the Processor and the peripheral
devices on the I/O Mux Bus. The Block I/O instructions shall provide for the .
transfer of blocks of data between the I/0 device and memory. All of the instruc-
tions described in this section are privileged and, if executed with the Processor
in Protect Mode (PSW Bit 7 set), result in an Illegal Instruction Interrupt.
Following I/0 instructions, the V flag in the Condition Code shall indicate an
instruction time-out. That is, due to an improper device response - either the
addressed device does not exist, or it did not respond correctly - the specified
I/O operation was not performed. An instruction time-out shall occur 30 micro-
seconds after initiation of the 1/O instruction if a synchronize signal has not been
received in response to issuing a device address. A time-out shall cause the V

A10-44

AOOK-001
Volume 1 of 1
8 June 1981

flag to be set and the next instruction to be executed. Following Sense Status or
Acknowledge Interrupt instructions, the Condition Code (CVGL) also reflects Bits
4 through 7 of the device status. With standard Interdata device controllers, Bit
5 of the status byte, which is reflected in the V flag in the Condition Code, is
defined as Examine Status. This means that status byte should be examined.
Following Sense Status and Acknowledge Interrupt instructions, therefore, the
occurrence of the V flag with status Bits 0 through 3 equal zero indicates
instruction time-out. The I/O instructions shall use the Register to Register (RR),
and the Register to Indexed Storage (RX) formats. The exact format, op-code,
assembler notation and diagrammatic representation of each instruction shall be
as shown in Figures 10.10-1, -2, -3, and -4. The operation and resulting
Condition Code shall be as follows:

a. Acknowledge Interrupt: The Acknowledge Interrupt (AI and AIR) instruc-
tions shall cause the address of the interrupting device to replace the
content of the 16-bit General Register specified by the first operand (R1).
The eight-bit device status byte shall replace the content of the location
specified by the second operand. The Condition Code shall be set equal
to the right-most four bits in the device status byte. The device
interrupt condition shall then be cleared. These instructions shall be
privileged. The resulting Condition Code when the addressed device is
a standard Interdata controller shall be:

Device busy (BSY)

Examine status (EX) or time out
End of medium (EOM)

Device unavailable (DU)

o o o +in
© o = o<
o = o o|ln
- o © ofpH

b. Sense Status: The Sense Status (SS and SSR) instructions shall provide a
means for determining the status of an external I/O device. The 16-bit
General Register specified by the first operand (R1) shall contain the
device address. The device shall be addressed and the eight-bit device
status byte shall replace the content of the location specified by the
second operand. The Condition Code shall be set equal to the right-most
four bits of the device status byte. The first operand shall remain
unchanged. These instructions shall be privileged. The resulting Condi-
tion Code when the addressed device is a standard Interdata controller
shall be:

C|V|IG|L
1 Device busy (BSY)

1 Examine status (EX) or time out
1 End of medium (EOM)

1 Device unavailable (DU)

A10-45

ACKNOWLEDGE INTERRUPT
[R1 (8:15)] <-—— DEVICE ADDRESS

AIR R1, R2

[R1 (€:7)] ==—— ZERO

[R2 (0:1§)] @— STATLH BYTE

[R2 (0:7)] ==———

[PSW (12:18)]) =— sTATus BYTE (4:7)

7|8

11

12

18

9F

R1

Al R1, A2 (X2)

[RR]

A1 (8:15)] <«—— DEVICE ADDRESS
R1 (0:7)) <~ ZERO
[A2 + (X2)] o= STATUS BYTE
[PSW (12:15)) = STATUS BYTE (4:7)

AQOK-001
Volume 1 of 1
8 June 1981

7] s 112 1sps 31
DF R1 x2 r A2
SENSE STATUS
S3R R1, R2 [R2 ((8:15)])~=— STATUS BYTE
[R2 {0:7)] =—— ZERO
[PSW (12:15)] <-— STATUS BYTE (4:7)
[V} 7|8 11§12 15
9D R1 R2 [RR]
i5 R1, A2 (X2) [A2 + (X2)] @——— STATUS BYTE
[PSW (12:15)) ==— STATUS BYTE (4:7)
0 718 1112 15} 16 31
(s]5] R1 X2 A2
OUTPUT COMMAND
OCR R1, R2 DEVICE =—— [R2 (8:15)]
0 7]e 11]12 15
9E R1 R2 [RR]}
oc R1, A2(X2) DEVICE <=——— [A2 + (X2)]
[RX]
0 7] 8 11§12 15] 16 31
DE R1 X2 A2

Figure 10.10-1. Acknowledge/Status/Command Instructions

SrZroets

[RX]

[RX]

[RX]

A10-46

AOOK-001
Volume 1 of 1

8 June 1981
READ DATA N
ROR R1,R2 - _ [R2 (8:15))<e—— DATABYTE N
(R2 (0:7)) «=——— ZERO ®
0
0 7|8 1112 15 =
98 R1 R2 [RR]
RD R1, A (X2) [A2 + (X2)]«——DATA BYTE
0 718 112 1516 31
DB R1 X2 A2 [RX])
WRITE DATA . [R2(8:15)]——a DEVICE
WDR R1, R2
0 718 11512 15
9A R1 R2 (RR]
DE
WO R1, A (X2) [A2 + (X2)) ———& DEVICE
0 718 1112 15116 31
DA A1 x2 A2 (RX)

AUTOLOAD Ay T ilbmmemas:
AL 2. (X'80' + n) =———— BYTE

3. ne—— n+1

4. IF A2 + (X2) < X'88' + n, INSTRUCTION IS FINISHED, OTHERWIDE RETURN TO
STEP 2

0 78 11122 1516 31

D5 R1 X2 A2 [RX]

Figure 10.10-2. Byte I/O Instructions

A10-47

AQOK-001
Volume 1 of 1
8 June 1981

READ HALEWORD e rirs vrE
RHR 1, R2 H - FIRST DATA D

Ao R OND DAYABYTE | 881T ORIENTED DEVICE CONTROLLER
R2 (0:15)] o HALFWORD OF DATA 16.81T ORIENTED DEVICE CONTROLLER
o 7,8 1112 18 :

o9 R1 R2

[RR]

RH R1, A2 (X2) A2 + (X2))=——FIRST DATA BYTE

A2+ (X2) + 1] ECOND DATA BYTE I 8-81T ORIENTED DEVICE CONTROLLER
A2 + (X2) }jo——HALFWORD OF DATA

7i8

11

12 16116

16-8IT ORIENTED DEVICE CONTROLLER

31

D9

R1

%2

A2

[RX]

WRITE HALFWORD

WHR R1, R2 [R2 {0:7)] ———eDEVICE)
Rz i DEVICE | B!T ORIENTED DEVICE CONTROLLER
R2 (0:15)) —>DEVICE 16-BIT ORIENTED DEVICE CONTROLLER
0 7|8 11§12 15
98 R1 R2 [RR)
WH RI, AZ (XZ) [AZ + (X2)}] —— DEVICE
(A2 + fxz;l, 1 J—e- DEVICE I 8-BIT ORIENTED DEVICE CONTROLLER
[A2 + (X2)] —= DEVICE ' 34.5)T ORIENTED DEVICE CONTROLLER
9 718 11112 15116 3
Da R1 x2 A2 Jimxx

Figure 10.10-3. Halfword 1/O Instructions

LY IVOEL

A10-48

AOOK-001

Volume 1 of 1

8 June 1981
READ BLOCK
RBR R1, R2
1. N = [A+(X2))
2. IFN > [A +(X2) + 2]
THEN TERMINATE WITH A CONDITION CODE = 0000
ELSE:
3. DEVICE=—(N)
4 N=—N+1
_ 5. RETURN TO STEP 2
0 78 1112 18
97 R1 R2 [RR]
A R1, A2(X2)
1. N = (R2)
2, IFN> (R2+1),
THEN: TERMINATE WITH A CONDITION CODE = 0000
ELSE:
3. DEVICE=—(N) .
4, N = N+1
5. RETURN TO STEP 2
0 7)8 11]12 15116 31
D7 R1 x2 A2
WRITE BLOCK
WBR R1, R2
L. N = [A+(X2))
2, IFN > [A +(X2) +2),
THEN: TERMINATE WITH A CONDITION CODE = 0000
ELSE: .
3. (N) =— DATA BYTE
4, Noa—=N+1
5. RETURN TOSTEP 2
0 78 1112 15
96 R1 R2 [RR]
WB R1, A2(x2)
1. N=—(R2)
2. IFN> (R2+1),
THEN: TERMINATE WITH A CONDITION CODE = 0000
ELSE:
3. (N) =— DATABYTE
4, No—N+1
5. RETURN TOSTEP 2
0 7,8 1112 15116 31
D6 R1 x2 A2

Figure 10.104. Block 1/O Instructions

[RX]

[RX]

A10-49

AOOK-001
Volume 1 of 1
8 June 1981

Qutput Command: The Output Command (OC and OCR) instructions
shall provide a means for commanding external I/O devices. The 16-bit
General Register specified by the first operand (R1) shall contain the
device address. The device shall be addressed and the eight-bit device
command byte specified by the second operand shall be transmitted to
the addressed device. Both operands shall remain unchanged. The
overflow bit shall be set if the device cannot complete the command
action. These instructions shall be privileged.

Read Data: The Read Data (RD and RDR) instructions shall address an
external I/0 device and input a byte of data. The 16-bit General Register
specified by the first operand (R1) shall contain the device address. The
device shall be addressed and a single eight-bit data byte shall be trans-
mitted from the device replacing the content of the location specified by
the second operand. These instructions shall be privileged. These
instructions should not be used with 16-bit oriented device controllers.
For 16-bit oriented devices, use Read Halfword/Write Halfword
instructions. :

Write Data: The Write Data (WD and WDR) instructions shall address
an external I/O device and output a2 byte of data. The 16-bit General
Register specified by the first operand (R1) shall contain the device
address. The device shall be addressed and a single eight-bit data byte
shall be transmitted to the device. Both operands shall remain
unchanged. These instructions shall be privileged. These instructions
should not be used with 16-bit oriented device controllers. For 16-bit
oriented devices, use Read Halfword/Write Halfword instructions.

Autoload: The Autoload (AL) instruction shall load memory with a block
of data from a byte oriented input device (e.g., Teletype, photoelectric
Paper Tape Reader, Magnetic Tape, etc.). The data shall be read a
byte at a time and stored in successive memory locations starting with
location X'80'. The last byte shall be loaded into the memory location
specified by the address of the second operand, A2 + (X2). Any blank
or zero bytes that are input prior to the first nonzero byte shall be
considered to be leader and therefore ignored; all other zero bytes shall
be stored as data. The input device shall be specified by memory loca-
tion X'78'. The device command code shall be specified by memory
location X'79'. This instruction shall be privileged. The Rl field of an
Autoload machine instruction shall contain 0. This instruction should
not be used with 16-bit oriented device controllers. For 16-bit oriented
devices, use Read Halfword/Write Halfword instruction. The resulting

A10-50

AOOK-001
Volume 1 of 1
8 June 1981

Condition Code when the addressed device is a standard Interdata
Controller shall be:

ofo|jo] o Data transfer completed correctly
Device Busy (BSY)

1 Examine Status (EX) or time out

1 End of Medium (EOM)

1 | Device Unavailable (DU)

Read Halfword: The Read Halfword (RH and RHR) instructions shall
address an external I/O device and input a halfword of data. The 16-bit
General Register specified by R1 shall contain the device address. The
device shall be addressed and a 16-bit halfword shall be received from
the device replacing the contents of the second operand. The Read
Halfword instruction shall be implemented such that it can work with
both 8-bit byte oriented device controllers and with 16-bit halfword
oriented device controllers. If the controller is byte oriented the
Processor shall input two 8-bit bytes, if the controller is halfword
oriented the Processor shall input one 16-bit halfword. These instruc-
tions shall be privileged. With the RX form (RH), the effective address
A2 + (X2) shall be an even value.

Write Halfword: The Write Halfword (WH and WHR) instructions shall
address an external I/0 device and output a halfword of data. The 16-bit
General Register specified by Rl shall contain the device address. The
device shall be addressed and a 16-bit halfword shall be transmitted to
the device from the location specified by the second operand. The Write
Halfword instruction shall be implemented such that it can work with
both 8-bit byte oriented device controllers and with 16-bit halfword
oriented device controllers. If the controller is byte oriented the
Processor shall output two 8-bit bytes, if the controller is halfword
oriented the Processor shall output one 16-bit halfword. The Read
Halfword and Write Halfword instructions are useful with devices
requiring two bytes per transfer. Since the transfer is accomplished
with one instruction instead of two, both time and memory are saved.
Some examples of devices with which these instructions can be used are
Halfword I/O Module, 16-line Interrupt Module, conversion equipment
(i.e., D/A and A/D Converters), Card Reader, and Control Panel. With
the RX form (WH), the effective address A2 + (X2) shall be an even
value. These instructions shall be privileged.

Read Block: The Read Block (RB and RBR) instructions shall address an
external 1/0 device and input a series of data bytes. The 16-bit General
Register specified by the first operand (R1) shall contain the device

A10-51

AOOK-001
Volume 1 of 1
8 June 1981

address. The 16-bit second operand location, (R2) or [A2 + (X2)] shall
contain the starting address of the data buifer to be transferred. The
next sequential halfword, (R2+1) or [A2 + (X2) + 2] shall contain the
ending address of the data buffer. The starting address shall be equal
to, or less than, the ending address. Data transfer shall be inclusive
of the buffer limits. If the starting address is greater than the ending
address, no transfer shall take place and the instruction shall terminate
with the Condition Code equal to zero. The Read Block instruction shall
cause transfer of eight-bit data bytes from a device to consecutive
memory locations. No other instructions shall be executed during
transfer of the data block. The Condition Code portion of the Program
Status Word [PSW (12:15)] shall be set to zero after a normal transfer.
In the event of an abnormal block data transfer, the Condition Code shall
not be zero. These instructions shall be privileged. These instructions
should not be used with 16-bit oriented device controllers. For 16-bit
oriented devices, use Read Halfword/Write Halfword instructions. For
RBR, General Register 14 shall be the maximum specification for the
R2 field. The resulting Condition Code when the addressed device is a
standard Interdata Controller shall be:

ojo0ojojo Block data transfer complete correctly
Device Busy (BSY)

1 Examine status (EX) or time out

1 End of Medium (EOM)

1 Device Unavailable (DU)

Write Block: The Write Block instructions (WB and WBR) instructions
shall address an external I/0 device and output a series of data bytes.
The 16-bit General Register specified by the first operand (R1) shall
contain the device address. The 16-bit second operand location, (R2) or
[A2 + (X2)] shall contain the starting address of the data buffer to be
transferred. The next sequential halfword, (R2+1) or [A + (X2) + 2] shall
contain the ending address of the data buffer. The starting address shall
be equal to, or less than, the ending address. Data transfer shall be
inclusive of the buffer limits, If the starting address is greater than the
ending address, no transfer shall take place and the instruction shall
terminate with the Condition Code equal to zero. The Write Block
instruction shall cause transfer of eight-bit data bytes from consecutive
memory locations to a device. No other instructions shall be executed
during transfer of the data block., The Condition Code portion of the
Program Status Word [PSW (12:15)] shall be set to zero after a normal
transfer. In the event of an abnormal block data transfer, the Condition
Code shall not be zero. These instructions are privileged. This
instruction should not be used with 16-bit oriented device controllers.

A10-52

AOOK-001
Volume 1 of 1
8 June 1981

For 16-bit oriented devices, use Read Halfword/Write Halfword
instructions. For WBR, General Register 14 is the maximum specifi-
cation for the R2 field. The resulting Condition Code when the
addressed device is a standard Interdata Controller shall be:

ojojo0]| O Block Data Transfer Completed Correctly
Device Busy (BSY)

1 Examine Status (EX) or Time Out

1 "~ End of Medium (EOM)

1 Device Unavailable (DU)

10.11 List Processing Instructions. The item shall execute the List Processing
instructions to manipulate a circular list as defined in Figure 10.11-1. The
first two halfwords shall contain the list parameters. The list shall immediately
follow the parameter block. The first halfword in the list shall be designated
slot 0. The remaining slots shall be designated 1, 2, 3, etc., up to a maximum
slot number, which is equal to the number in the list minus one. An absolute
maximum of 255 halfword slots shall be specifiable. The first parameter byte
shall indicate the number of slots (halfwords) in the entire list. The second
parameter byte shall indicate the current number of slots being used. When this
byte equals zero, the list shall be empty; when this byte equals the number of
slots in the list, the list shall be full. Once initialized, this byte shall be
maintained automatically. It shall be incremented when elements are added to
the list and decremented when elements are removed. The third and fourth bytes
of the list parameters shall specify the current top of the list and the next bottom
of the list, respectively, as shown in Figure 10.11-2. These pointers shall also
be updated automatically.

These instructions shall use the Register to Indexed Storage (RX) format. The
exact format, op-code, assembler notation and diagrammatic representation of
each instruction shall be as shown in Figure 10.11-3, The operation and
resulting Condition Code shall be as follows:

a. Add to Top/Bottom of List: The Add to Top of List (ATL) and Add to
Bottom of List (ABL) instructions shall manipulate the list pointers and
halfwords to the addressed list. The General Register specified by R1
shall contain the element to be added to the list. The second operand,
A2 + (X2), shall specify the address of the list. The number of slots
used tally shall be compared to the number of slots in the list as speci-
fied by the first byte of the list. If the number of slots used tally is
equal to the number of slots in the list an overflow condition shall occur
and the element shall not be added to the list. Instead the instruction
shall be terminated with the V flag set in the PSW. If the number of slots
used tally is less than the number of slots in the list; it shall be
incremented by one, the appropriate pointer changed, the element added

A10-53

AOOK-001
Volume 1 of 1
8 June 1981

~J
o 78 18 E
" NUWSER OF SLOTS NUMBER OF sm_‘ '
iN THE LIST USED e
CURRENT TOP © NEXT BOTTOM
SLOT 0
SLOT 1
¥ >
SLOTn

Figure 10.11-1. List Processing Instruction Format

CURRENT TOP
i

SLOTn
SLOT O

OCCUMED
SECTION

- [SLOT 1

SLOT 2
SLOT 3
S5LOT 4

NEXT BOTTOM —= | SLOT 6

SLOT 7

0G-ZVOEL

Figure 10.11-2. Circular List Instruction Processing

A10-54

AOOK-001
Volume 1 of 1

8 June 1981
ADD TO TOP/OTTOM OF LIST
ATL R1, A2 (X2) ~
w
b
9
64 R1 w2 A2 [RX]) g
ABL R1, A2 (X2)
718 11112 13116 31
65 R1 x2 A2 [RX]
REMOVE FROM TOP/BOTTOM OF LIST
RTL R1, A2 (X2)
718 1182 15]16 31
(13 R1 X2 A2 [RX]
RBL R1, A2 (X2)
718 11 15]16 31
67 R1 X2 A2 [RX]

Figure 10.11-3. List Processing Instructions

to the list, and the instruction terminated with a Condition Code of zero.
The Add to Top of List (ATL) instruction shall manipulate the Current
Top Pointer in the list. If no overflow occurred, the Current Top
Pointer, which points to the last element added to the top of the list
shall be decremented by one and the element inserted in the slot pointed
to by the new Current Top Pointer. If the Current Top Pointer was zero
on entering this instruction the Current Top Pointer shall be set to the
maximum slot number in the list. This condition shall be referred to as
list wrap. The Add to Bottom of List (ABL) instruction shall manipulate
the Next Bottom Pointer. If no overflow occurred, the element shall be
inserted in the slot pointed to by the Next Bottom Pointer, and the Next
Bottom Pointer incremented by one. If the incremented Next Bottom
Pointer is greater than the maximum slot number in the list, the Next
Bottom Pointer shall be set to zero. This condition shall also be
referred to as list wrap. The resulting Condition Code shall be:

C|V| G| L
o|j1]0]0 List overflow
ofojo0]o0 Element added successfully

Remove From Top/Bottom of List: The Remove from Top of List (RTL)
and Remove from Bottom of List (RBL) instructions shall manipulate

the list pointers -and remove halfwords from the addressed list. The
element removed from the list shall be placed in the General Register
specified by R1. The second operand, A2 + (X2), shall specify the

A10-55

AQOK-001
Volume 1 of 1
8 June 1981

address of the list. If, on entering the instruction the '"number of slots
used" tally is zero, the list is already empty and the instruction terminate
with the V flag set in the PSW. This condition shall be referred to as list
underflow. If underflow does not occur the number of slots used tally
shall be decremented by one, the appropriate pointer changed, and the
element extracted and placed in R1. The instruction shall terminate

with the Condition Code equal to zero if the list is now empty, or with

the G flag set if the list is not yet empty. The Remove from Top of List
(RTL) instruction, shall manipulate the Current Top Pointer. If no
underflow occurred, the Current Top Pointer shall point to the element
to be extracted. The element shall be extracted and placed in R1. The
current Top Pointer shall be incremented and compared to the maximum
glot number. If the Current Top Pointer is greater than the maximum
slot number, the Current Top Pointer shall be set to zero. This condi-
tion shall be referred to as list wrap. The Remove from Bottom of List
(RBL) instruction, shall manipulate the Next Bottom Pointer. If no
underflow occurred, and the Next Bottom Pointer is zero it shall be set

to the maximum slot number iliat wrap); otherwise it shall be
decremented by one and the element now pointed to shall be extracted and
placed in R1, The resulting Condition Code shall be:

List was already empty
List is now empty

o o ol|ln
o o H|«
= oo o
©c o ofp

List is not yet empty

A10-56

AOOK-001
Volume 1 of 1
8 June 1981

10.12 Central Computer Instructions

10.12.1 1Instruction definition. The central computer will be capable of
executing instructions as specified in the following instruction repertoire, which
shall consist of 64 instructions. Use of all 64 instructions shall be possible,
however use of the 11 serial I/0 instructions out of the set may not be applicable
for the application described herein,

a, CONTROL OPERATIONS

OP CODE R Y

T1-08596

5.

TRU — Transfer Unconditionally (OP CODE 00). The computer
will take the next instruction from the location in memory speci-
fied by Y and R,

TRN — Transfer on Accumulator Negative (OP CODE 01), The
sign bit of the accumulator is sensed, If it is negative (1), con-
trol is transferred to the memory location specified by Y and R.
If the accumulator sign is positive (0), the computer will take
the next instruction in sequence,

TRZ — Transfer on Accumulator Zero (OP CODE 02)., The con-
tents of the accumulator are tested for a zero value. The sign
bit is not tested. If the contents of the accumulator are zero,
control is transferred to the memory location specified by Y and
R. If the contents of the accumulator are not zero, the computer
will take the next sequential instruction.

TOF — Transfer on Overflow (OP CODE 03). If the Overflow
Indicator is on, the indicator is turned off and the computer takes
the next instruction from the memory location specified by Y and
R. If the Overflow Indicator is off, the computer takes the next
instruction in sequence.

TSX — Transfer and Set Return Address in Index Register 12
(OP_CODE 12), The contents of the program counter plus one

are placed in index register 12 of the specified index register
bank., The computer will then take its next instruction from the
memory location specified by Y and R, The value placed into the
index register represents the memory location immediately
following the location of this TSX instruction. The transfer por-
tion of the Transfer and Set Index instruction may utilize all of the

indexing options,

A10-57

AOOK-001
Volume 1 of 1
8 June 1981

6. CMA — Compare Algebraic (OP CODE 30). The contents of the
accumulator are algebraically compared with the contents of
the memory word at the location specified by Y and R. Two
compare indicators, high, and low, are treated as follows: if
the accumulator is lower, the low indicator is turned on and the
other off; if the accumulator is higher, and high indicator is
turned on and the other off, If they are equal, both are turned on,
For the purposes of this instruction + zero is greater than - zero,
+377777g is the highest number, and -377777g is the lowest num-
ber. Only the execution of another CMA, CML or PAI instruction
will alter these indicators,

7. CML - Compare Logical (OP CODE 31). The entire contents of
the accumulator, including sign, are logically compared with the
contents cof the memory word at the location specified by Y and R,
Two compare indicators, high and low, are treated as follows:
if the accumulator is lower, the low indicator is turned on and the
other off; if the accumulator is higher, the high indicator is turned
on and the other off. If they are equal, both are turned on, For
the purposes of this instruction 0000008 is the lowest number and
777777g is the highest number. Only the execution of another
CMA, CML or PAI instruction will alter these indicators.

8. TRE — Transfer Equal (OP CODE 05). If both compare indicators
are on, the computer takes the next instruction from the memory
location specified by Y and R. If either compare indicator is off,
the computer takes the next instruction in sequence., The execu-
tion of this instruction will not alter the state of the compare
indicators,

9. TRH — Transfer High (OP CODE 08). If only the high compare
indicator is on, the computer takes the next instruction from the
memory location specified by Y and R, If the high compare indi-
cator 1s off or both compare indicators are on, the computer takes
the next instruction in sequence. The execution of this instruction
will not alter the state of the compare indicators.

10. TRL — Transfer lLow (OP CODE 07). If only the low compare
indicator is on, the computer takes the next instruction from the
memory location specified by Y and R. If the low compare indi-
cator is off or both compare indicators are on, the computer
takes the next instruction in sequence, The execution of this
instruction will not alter the state of the compare indicators,

11. LCK - Lock (OP CODE 14) (X=4).

OP CODE N X N

L1-0B596

A10-58

12,

AOOK-001
Volume 1 of 1
8 June 1981

In a dual processor system, the value N is placed in the lock
register of processor A. The number is then compared with

the contents of the lock register of processor B. If equal, the
lock register of processor A is reset and the computer will take
the next instruction in sequence, If unequal, one instruction is
skipped. In any case, the lock register and instruction sequence
of processor B are unchanged. In case of both computers
executing a sequence involving the lock instruction with the same
number simultaneously, the processor having indicator 7 set at
that time will have its lock register set first. In a single proc-
essor system with the ignore lock switch on, this instruction will
act as a no-operation and the computer will take the next instruc-
tion in sequence,

ULK — Unlock (OP CODE 14) (X=0).

OP CODE

ST-08596

The lock register of the processor is reset. In a alnéle processor
system this instruction will act as a no-operation and the computer
will take the next instruction in sequence.

b. ARITHMETIC OPERATIONS

OP CODE R Y

91-08596

4 5 8 9 17

ADD — Add (OP CODE 22). The contents of the memory location
specified by Y and R are algebraically added to the contents of the
accumulator, The result is placed in the accumulator. The over-
flow indicator will be set (turned on) if an overflow occurs, If

the result is zero, the sign of the result is the original sign of

the accumulator,

SUB — Subtract (OP CODE 23). The contents of the memory loca-

tion specified by Y and R are algebraically subtracted from the
contents of the accumulator. The result is placed in the accumu-
lator, The overflow indicator will be turned on if an overflow
occurs, If the result is zero, the sign of the result is the
original sign of the accumulator.

A10-59

AO0K-001
Volume 1 of 1
8 June 1981

3. MLY — Multiply (OP CODE 24). The contents of the memory
location specified by Y and R are multiplied by the contents of
the accumulator. The product, which is a double length word,
is placed in the combined accumulator and 0 register. The high
order bits are in the accumulator and the low order bits are in
the 0 register. The sign of the product is in the sign bits of
both the accumulator and Q register. Overflow is not possible,
The initial value of the Q register does not affect the result of
this instruction,

4. DIV - Divide (OP CODE 25). The double-~length dividend in the
combined accumulator and Q register is divided by the contents of
the memory location specified by Y and R. Most significant bits
of the dividend are located in the accumulator. The sign of the
dividend is the sign of the accumulator. The single~length quotient
is in the accumulator with the appropriate sign, and the remainder
is in the Q register with the sign of the dividend. The divisor
must be greater in magnitude than the higher-order half of the
dividend. It is is not, the division does not take place and the
divide check indicator is turned on, the accumulator and Q regis-
ter remain unchanged, and the computer takes the next sequential
instruction,

5. DPA — Double Precision Add (OP CODE 04), The double-~length

contents of Y + 1 and Y are algebraically added to the double-
length word in the combined accumulator and Q register, Y+1
contains the high-order bits of the double~length operand and Y
contains the low-order bits., These two words must have the same
sign, The double-length sum is left in the accumulator and Q
register with the high-order bits in the accumulator and the low-
order bits in the Q registsr. The accumulator and Q register
must have the same sign. The overflow indicator will be turned
on if any overflow occurs out of the accumulator. If the result
is zero in both registers, the sign of the result is the original
sign of the accumulator,

6. SQR — Square Root (OP CODE 37) (X=1).

r1-08596

orcove [m x

4 5

The single-length square root of the double-length argument in
the combired accumulator and Q register is put in the accumula-
tor, The contents of the Q register are destroyed. If the sign of
the agrument is negative (sign of the accumulator), the square
root is not performed and the divide check indicator is turned

A10-60

AOOK-001
Volume 1 of 1
8 June 1981

on, the accumulator and Q register remain unchanged, and the
computer takes the next sequential instruction, The binary point
for this instruction is located between Ao and Al.

¢. WORD TRANSMISSION OPERATIONS

QP CODE R Y

Z1-08596

CLA — Clear and ADD (OP CODE 20). The contents of the mem-
ory location specified by Y and R replace the contents of the
accumulator,

STR — Store Accumulator (OP CODE 26). The contents of the

accumulator are stored in the memory location specified by
Y and R, The contents of the accumulator remain unchanged.

LDQ — ILoad Q Register (OP CODE 21), The contents of the

memory location specified by Y and R replace the contents of
the Q register,

STQ — Store Q Register (OP CODE 27). The contents of the Q
register are stored in the memory location specified by Y and R,
The contents of the Q register remain unchanged.

d. INDEX REGISTER OPERATIONS

OP CODE R x Y

ET1-08S96

INX — Increment Index (OP CODE 10) (X=1). The Y field is
added to the contents of the index register specified by R, If
R=0 or 13, no operation will result, If R=14 or 15, the com-
puter will add the 17 bit Y1 field of the memory location speci-
fied by Y to bits 01-17 of index register 1 if R is a one.
Otherwise no operation will result, A negative Y value for
relative addressing is not possible for this instruction,

DCX — Decrement Index (OP CODE 10) (X=0). The Y field is
subtracted from the contents of the index register specified by R,
If R=0 or 13, no operation will result, If R=14 or 15, the com-
puter will subtract the 17 bits of the Y! field of the memory

A10-61

AOOK-001
Volume 1 of 1
8 June 1981

location specified by Y from bits 01-17 of Index Register 1 if R1
is a one, Otherwise no operation will result, A negative Y value
for relative addressing is not possible for this instruction.

TRX — Transfer on Index (OP CODE 13)., If the contents of the
index register specified by R are zero, the computer takes the

next sequential instruction. If the contents of the index register
specified by R are not equal to zero, the contents are decremented
by one and the computer takes its next instruction from the memory
location specified by Y, which is always relative, If R=14 or 15,
the computer will use the 17-bit indirect address and index register
1if Rl is a one. If R=0 or 13, no operation will result and the
computer takes the next sequential instruction.

SXH — Skip on Index High (OP CODE 11). The contents of the
index register specified by R are compared to the number in the
Y field. If the contents of the index register are greater than the
value of ¥, one instruction is skipped; otherwise, the computer
will take the next sequential instruction, If R=14 or 15, the com-
puter will use the 17-bit indirect address and index register 1 if
R! is a one. If R=0 or 13, no operation will result and the com-
puter takes the next sequential instruction.

e. LOGICAL OPERATIONS
3
&
OP CODE R v ?
-]
1] 4 5 8 9 17
1. LGA — Logical Add (OP CODE 32). Bits of the accumulator

corresponding to 1's in the contents of the memory location
specified by Y and R are set to 1, All other bits remain unchanged.
This is the inclusive OR function,

LGM - Logical Multiply (OP CODE 33). When corresponding bits
of the accumulator and the contents of the memory location speci-
fled by Y and R are both 1's, those bits in the accumulator will
remain 1, All other bits in the accumulator will be set to zero.
This i8 the AND function,

LGC — Logical Complement (OP CODE 34). Bits of the accumu-
lator corresponding to 1's in the contents of the memory location
specified by Y and R are inverted, All other bits remain
unchanged, This is the exclusive OR function,

CGC — Convert Gray Code (OP CODE 35). The contents of the
memory location specified by Y and R are converted from gray

A10-62

AOQK-001
Volume 1 of 1
8 June 1981

code to sign and magnitude, and the result is placed in the
accumulator,

f. SHIFT OPERATIONS

OP CODE R X K

01-08596

LSA — Left Shift Accumulator (OP CODE 36) (X=1). The contents
of the accumulator are shifted left the number of bits specified
by K adﬂed to the contents of the index register specified by R,
modulo 26, The sign bit is unchanged. Zeros are shifted into
the least sig‘niﬁcant bit; bits shifted out of the most significant
bit are lost and will cause an overflow if equal to 1. An over-
flow will turn on the overflow indicator,

LSB — Left Shift Both (Accumulator and Q Register) (OP CODE 36)
(X =3). The double-length word in the combined accumulator and
Q register is shifted left the number of bits specified by K added to
the contents of the index register specified by R, modulo 26, The
sign bit of the Q register is unchanged and is always copied 111!:0
the sign bit of the accumulator. Zeros are shifted into the least-
significant bit of the Q register. Bits shifted out of the most-
significant bit (sign not included) of the accumulator are lost and
will cause an overflow if equal to 1, An overflow will turn on

the overflow indicator.

RSA — Right Shift Accumulator (OP CODE 36) (X=0). The con-
tents of the accumulator are shifted right the number of bits
specified by K added to the contents of the index register specified
by R, modulo 26, The sign bit is8 unchanged. Zeros are shifted
into the most significant bit and bits shifted out of the least
significant bit are lost, Overflow cannot occur,

RSB — Right Shift Both (Accumulator and Q Register) (OP CODE
36) (X =4). The double-length word in the combined accumulator
and Q register is shifted right the number of bits specified by K
added to the contents of the index register specified by R, modulo
26, The sign bit of the accumulator is unchanged and is copied
always into the sign bit of the Q register. Zeros are shifted into
the most significant bit of the accumulator. Bits shifted out of the
least significant bit of the accumulator are shifted into the most
significant bit (sign not included) of the Q register. Bits shifted
out of the least significant bit of the Q register are lost. Over-
flow cannot occur,

A10-63

5.

AQO0K-001
Volume 1 of 1
8 June 1981

RRA — Right Rotate Accumulator (OP CODE 36) (X=5). The
entire contents of the accumulator are shifted circularly to the
right the number of bits specified by K added to the contents of the
index register specified by R, modulo 26, The sign bit is
included in the shift, Bits shifted out of the least significant bit
are shifted into the sign bit. Overflow cannot occur.

RRQ — Right Rotate Q Register (OP CODE 36) (X=6). This
instruction is similar to Right Rotate Accumulator, except that
the Q register is shifted.

LRB — Left Rotate Both (Accumulator and Q register) (OP CODE
36) (X = 2). The double-length logical word in the combined
accumulator and Q register is shifted circularly to the left the
number of bits specified by K added to the contents of the index
register speciiied by R, modulo 26, The sign bits are included
in the shift, Bits shifted out of the bit sign of the accumulator
are shifted into the least significant bits of the Q register. Bits
shifted out of the sign bit of the Q register are shifted into the
least significant bit of the accumulator. Overflow cannot occur,

RRB — Right Rotate Both (Accumulator and Q Register) Parity
Generation (OP CODE 36) (X=7). The double-length logical word
in the combined accumulator and Q register is shifted circularly
to the right the number of bits specified by K added to the contents
of the index register specified by R, modulo 26, The sign bits are
included in the shift, Bits shifted out of the least significant bit
of the Q register are shifted into the sign bit of the accumulator,
Bits shifted out of the least significent bit of the accumulator are
shifted into the sign bit of the @ register. Overflow cannot occur.
During the execution of this instruction the ring sum of the bits
shifted out of Q17 into the sign bit of the accumulator is set into
sense indicator 2, The effect of this is to generate the parity

of the field of bits shifted. If odd, sense indicator 2 is inverted,
and if even, sense indicator 2 is not inverted, Sense indicator

2 should be reset by the program since the sense indicator is

not automatically reset before execution of the instruction,

A10-64

AQOK-001
volume 1 of 1
8 June 1981

g. OPERATIONS ON ACCUMULATOR AND Q REGISTER

1) INSTRUCTION FORMAT FOR SAP, CSA, XCA, AND CPA:

6-08596

[/}

2) INSTRUCTION FORMAT FOR LPR AND RPR:

o cooe ‘ W x %

9 11 12 17

[}

3) INSTRUCTION FORMAT FOR LBI AND RBI:

4 8 9 11 12 17

BIO
OpCODE CHANNEL | ! x /
. A

4 5 7 8 9 1 12 17

SAP — Set Accumulator Positive (OP CODE 37) (X=0). The sign
bit of the accumulator is set to zero (positive),

CSA — Change Sign of Accumulator (OP CODE 37) (X=4). The
sign bit of the accumulator is inverted.

XCA — Exchange Accumulator and Q Register (OP CODE 37) (X=3).
The contents of the accumulator and Q register, including the
sign bits, are exchanged.

CPA — Two's Complement Accumulator (OP CODE 37) (X=5). If
the sign of the accumulator.is negative, the contents of the
accumulator, excluding sign, are replaced with the two's comple-
ment of that number. The sign remains unchanged. If the sign

of the accumulator is positive, the accumulator remains unchanged.

LPR — Load Page Register (OP CODE 37) (X=2). Page register
whose address is specified by A register is loaded with the con-
tent of Q register, and the contents of A and Q are incremented
by 1. A total of 255 page registers shall be loadable under
program control, A load page register zero (0) instruction shall
be treated as a NoOp. Bit 8 of the instruction must be set to
zero (0).

A10-65

AQOK-001
Volume 1 of 1
8 June 1981

6. RPR — Read Page Register (OP CODE 37) (X=6). Page register
whose address is specified by A register is placed into the Q
register, and the contents of A is incremented by 1. Bit 8 of the
instruction must be set to zero (0). All 256 page registers shall
be accessible by RPR,

7. LBI — Load Block Indicators (OP CODE 37) (X=2). The LBI
Instruction shall set the Block Indicators when bit 8 is set to
one (1), with bits 5, 6, and 7 specifying the BIO channel, Bits 14,
15, 16, and 17 of the Q register shall be stored into the Block
Indicators for the specified channel, Bits 14 and 15 shall be
stored inte spare Block Indicators and bits 16 and 17 stores into
the usable Block Indicators (see 3.2.1.4.5).

8. RBI — Read Block Indicators (OP CODE 37) (X=6). The RBI
instruction shall read the Block Indicators when bit 8 is set to
one (1) and bits 5, 6, and 7 specifying the BIO channel. Block
Indicators for the specified channel shall be stored into the Q
Register bits 6, 7, 8, and 9. Bits 6 and 7 shall correspond to
the spare Block Indicators (not used) and bits 8 and 9 correspond
to the usable Block Indicators (see 3.2,1.4,5),

OPERATIONS ON INDICATORS AND SWITCHES (See 3.2,1,14 for
description of indicators), ,

8-08S96

N
OP CODE F1 N oy X £s -F10

1. SEI —Set Indicators (OP CODE 14) (X=2). The indicators speci-
fied by a 1-bit in the corresponding position in the N fields are
set (1), All other indicators remain unchanged. Each of the 10
bits in the N field corresponds to one of the 10 indicators, F1
through F10, Indicator F3 is not affected by this instruction.
Indicator F7 is always set in the single processor configuration.

2. REI — Reset Indicators (OP CODE 14) (X=3). This instruction
is similar to Set Indicators, except that the indicators specified
by a 1-bit in the corresponding position of the N fields are reset
(0). Indicator F3 is not affected by this instruction. Indicator
F7 is always set in the single processor configuration.

A10-66

AQOK-001
Volume 1 of 1
8 June 1981

3. SKI —Skip on Indicators (OP CODE 14) (X=1). If all indicators
specified by 1 bits in the N fields are on (1), one instruction

is skipped. If any of the specified indicators are off (0), the next

instruction in sequence is taken,

fields corresponds to one of the 10 indicators.

Each of the 10 bits in the N

OP CODE

P

Wz

4 5 8 9

11 12 17

4, PIA — Place Indicators in Accumulator (OP CODE 14) (X=6).
contents of the thirteen sense indicators are placed in the accumu-

lator as shown below, The remaining bits of the accumulator are

cleared,
0 - e () oVF| LO HI g SENSE INDICATORS i
4 5 6 7 8 17
ACCUMHI._..ATQR
00
OP CODE X
~ Z
4 5 8 9 11 12 17

5. PAI - Place Accumulator in Indicators (OP CODE 14) (X=1).

The 13 least significant bits of the accumulator are used to set
or reset the sense indicators plus the two high-low indicators

5-08596

The

9-08596

£-08596

and the overflow indicator., Indicators 1, 3 and 7 are not changed

by the instruction,

OP CODE

N
51 =—————————p 54

S6 =510

4

5 B 9

11 12 17

The position of the bits in the accumulator is
shown under the PIA (Place Indicators in Accumulator) instruction,

Z-08596

A10-67

6.

AOOK-001
Volume 1 of 1
8 June 1981

SKW — Skip on switches (OP CODE 14) (X=5). If all the switches
specified by 1 bits in the N flelds are on, one instruction is
skipped. If any of the specified switches are off, the next instruc-
tion in sequence is taken, Each of the 10 bits in the N fields
corresponds to the 10 sense control switches on the computer

maintenance control panel,

i, BUFFERED I/0

+ 0
(-]
&
OP CODE c W Y ?
1] 4 5 /7 8 9 17
1. EXF — External Function (OP CODE 17). If Y1 =0, the contents

of the memory word specified by the absolute value of Y are sent
via the input/output module to the device on the appropriate
channel, If Yj =1, the contents of the memory word specified
by the program counter plus the value of Y are sent, C shall be
coded 0 through 7, corresponding to one of the eight channels. If
the channel designated should be in a four-channel group which
does not exist, the instruction becomes a no-op. All EXF
command words shall be resident in the first block of memory
(address 0 to 131,071),

J. SERIAL I/O INSTRUCTIONS

OP CODE

08596

L

9 11 1

TWA — Keyboard Activate (OP CODE 15) (X=6). The Keyboard
Enable Light is turned on, and the Console Not Busy Indicator is
turned off. This will enable the data terminal to allow keyboard
inputs. The SIO unit translates the ASCII coded characters from
the teleprinter to equivalent selectric character codes during
Keyboard entry operations., No operation will occur if the
Console Not Busy Indicator is off previous to this instruction,
and the computer will continue with the next instruction in
sequence,

TWF — Keyboard Off (OP CODE 15) (X=7). The Keyboard Enable
Light 18 turned off and the Console Not Busy Indicator is turned
on, This instruction will inhibit any attempt to input from the
keyboard,

A10-68

A00K-001
Volume 1 of 1
8 June 1981

OTW — Output to Printer (OP CODE 16) (X-3).. The BCD
character in the least significant 6 bits of the Q Register is
output to the teleprinter through the Console Buffer Register.

The SIO unit translates selectric character codes to equivalent
ASCII codes. The computer continues with the next instruction

in sequence immediately after the character in the Q Register is
placed in the Console Buffer Register. The Console Not Busy
Indicator is turned off and remains so until the character has been
typed. No operations will occur if the Console Not Busy Indicator
is off previous to this instruction, and the computer will continue
with the next instruction in sequence.

IPC — Input from Console (OP CODE 16) (X=0). If the 7 Level
pushbutton on the Maintenance/Control Panel is not enabled (light
off), the least significant 6 bits of the Console Buffer Register

are placed in the least significant 6 bits of the Q Register, Bit
positions 0 through 11 of the Q Register are not altered. If the

7 Level pushbutton is enabled (lighted), the least significant 7 bits
of the Console Buffer Register are placed in the least significant

7 bits of the Q Register, Bit positions 0 through 10 of the Q Regis-
ter are not altered,

CTA — Console Tape Advance (OP CODE 15) (X=1). CTA causes
the SIO unit to input data into the computer from the block buffer
if it has valid data. After the block buffer has been unloaded or

if 1t contains no data at the time CTA is received, the SIO unit
causes data to be read from the teleprinter cassette unit which is
in the playback mode,

The Console Not Busy Indicator is turned off. No operation will
occur if the Console Not Busy Indicator is off previous to this
instruction, and the computer will continue with the next instruc-
tion in sequence. The SIO unit issues control codes Load and DCI
required by the teleprinter for this instruction,

CTS — Console Tape Stop (OP CODE 15) (X=2). CTS causes the
SIO to complete inputting any character which is being processed
at the time CTS is received., In addition, the SIO causes the
teleprinter cassette unit, which is in the playback mode, to stop
sending data to the computer,

The Console Not Busy Indicator is turned on. The SIO issues the
DC3 control code required by the teleprinter for this instruction,

CTR — Console Tape Rewind (OP CODE 15) (X=3), CTR causes
the teleprinter to rewind the cassette which is in the playback
mode. The tape motion will be stopped by the teleprinter when
it senses clear leader. There will be a program interrupt upon
completion of the rewind, No operation will occur if the Console
Not Busy Indicator is off previous to this instruction, and the

A10-69

AOOK-001
Volume 1 of 1
8 June 1981

computer will continue with the next instruction in sequence,
The SIO issues the rewind control code required by the teleprinter
for this instruction,

8. PMO — Punch Motor On (OP CODE 15) (X-4). PMO causes the
teleprinter cassette unit which is to be used for recording to be
placed in the Record-On Mode and enables it to begin recording
data from the computer, The SIO unit issues control codes Load
and DC2 necessary to control the teleprinter with this instruction,

9. PMF - Punch Motor Off (OP CODE 15) (X=5). PMF causes the
SIO to fill the hlock buffer in the teleprinter to ensure that the
last data bytes output to the teleprinter get recorded on tape,

This is done by the transmittal of 86 NULL characters. In
addition, PMF causes the teleprinter cassette unit which is in

the record mode to cease recording. The SIO issues control code
DC4 to control the teleprinter with this instruction,

10. OPA — Qutput 6 Bits to Tape Punch (OP CODE 16) (X=1). The
least significant 6 bits of the Q Register are output to the data
terminal through the Console Buffer Register. Odd parity, com-
puted using these six bits and sense indicator F04, is also output
to the teleprinter. The computer continues with the next instruc-
tlon in sequence immediately after the 6 bits in the Q Register
are placed in the Console Buffer Register., The Console Not Busy
Indicator is turned off and remains so until the frame has been
recorded, No operation will occur if the Console Not. Busy
Indicator is off previous to this Instruction, and the computer
will continue with the next instruction in sequence,

11, OPB Output 7 Bits to Tape Punch (OP CODE 16 X=2). This
instruction is similar to OPA (Output 6 Bits to Tape Punch)
except that odd parity is computed using these 7 bits and sense
indicator F04 and the least significant 7 bits in the Q Register
are output to the teleprinter through the Console Buffer Register,

10.12.2 Ilegal instruction operation. When the processor detects an
illegal op code or an illegal R field (R=13, 14, 15 for shift instructions) it shall
set an illegal instruction indicator on the maintenance/control panel, If the
illegal instruction restart pushbutton is enabled from the maintenance/control
panel, the processor shall store its program counter in temporary register T,
the program counter is reset to location zero prior to the next instruction fetch,
and processing continues from location zero. If illegal instruction restart is not
enabled an illegal instruction is treated as a no-op and the next instruction is taken
in sequence,.

A10-70

